147 research outputs found
Estimation of Para Red Dye in Chilli Powder and Tomato Sauces by a Simple Spectrophotmetric Method followed by Thin layer Chromatography
A number of grinded chilli powder samples and tomato sauce samples were collected from various localities of Karachi city. All the samples were estimated for the presence of para red which is an azo dye and more specifically belongs from the group of sudan dyes. According to the regulation of various governmental agencies its use in food is strictly prohibited because of its ability to form carcinogenic compounds. Although there were a number of sophisticated chromatographic methods for the estimation of this dye but we developed here a simple, convenient, expeditious spectrophotometric method followed by thin layer chromatography technique and compared the results by single point and multiple point external standard methods. On the basis of these results we also specify the localities of Karachi city where the contamination is more prominent. © JASE
Optimal power flow and unified control strategy for multi-terminal HVDC systems
© 2019 IEEE. This paper presents an automation strategy for multi-terminal HVDC (MT-HVDC) systems combining a dc optimal power flow (dc OPF) routine and a unified reference controller (URC). In the presented automatic framework, the dc OPF algorithm is implemented at the power dispatch center (PDC) of the MT-HVDC system to find optimal reference operation points of the power converters to minimize the losses during the operation of the MT-HVDC grid and solves the contradiction between minimizing losses and preventing commutation failure. At the local control systems, the operating points of the voltage-source converter (VSC) stations are tuned based on the calculations executed in the PDC, which enables fast response to power fluctuation and ensures a stable dc voltage. However, if the communication between the two control layers is lost, the MT-HVDC grid remains stable based on the pre-defined - droop characteristics for the power converter stations till the connection establishes again, and a set of new operating points is generated and sent. The static and dynamic simulations conducted on the CIGRE B4 HVDC test grid establish the efficient and effective grid control performance with the proposed automation strategy. The analysis shows that the proposed control scheme achieves the desired minimum losses while, at the same time, satisfying the system constraints
Individual participant data meta-analysis of LR-5 in LI-RADS version 2018 versus revised LI-RADS for hepatocellular carcinoma diagnosis
Background
A simplification of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 (v2018), revised LI-RADS (rLI-RADS), has been proposed for imaging-based diagnosis of hepatocellular carcinoma (HCC). Single-site data suggest that rLI-RADS category 5 (rLR-5) improves sensitivity while maintaining positive predictive value (PPV) of the LI-RADS v2018 category 5 (LR-5), which indicates definite HCC.
Purpose
To compare the diagnostic performance of LI-RADS v2018 and rLI-RADS in a multicenter data set of patients at risk for HCC by performing an individual patient data meta-analysis.
Materials and Methods
Multiple databases were searched for studies published from January 2014 to January 2022 that evaluated the diagnostic performance of any version of LI-RADS at CT or MRI for diagnosing HCC. An individual patient data meta-analysis method was applied to observations from the identified studies. Quality Assessment of Diagnostic Accuracy Studies version 2 was applied to determine study risk of bias. Observations were categorized according to major features and either LI-RADS v2018 or rLI-RADS assignments. Diagnostic accuracies of category 5 for each system were calculated using generalized linear mixed models and compared using the likelihood ratio test for sensitivity and the Wald test for PPV.
Results
Twenty-four studies, including 3840 patients and 4727 observations, were analyzed. The median observation size was 19 mm (IQR, 11–30 mm). rLR-5 showed higher sensitivity compared with LR-5 (70.6% [95% CI: 60.7, 78.9] vs 61.3% [95% CI: 45.9, 74.7]; P < .001), with similar PPV (90.7% vs 92.3%; P = .55). In studies with low risk of bias (n = 4; 1031 observations), rLR-5 also achieved a higher sensitivity than LR-5 (72.3% [95% CI: 63.9, 80.1] vs 66.9% [95% CI: 58.2, 74.5]; P = .02), with similar PPV (83.1% vs 88.7%; P = .47).
Conclusion
rLR-5 achieved a higher sensitivity for identifying HCC than LR-5 while maintaining a comparable PPV at 90% or more, matching the results presented in the original rLI-RADS study
CT/MRI and CEUS LI-RADS Major Features Association with Hepatocellular Carcinoma: Individual Patient Data Meta-Analysis
Background The Liver Imaging Reporting and Data System (LI-RADS) assigns a risk category for hepatocellular carcinoma (HCC) to imaging observations. Establishing the contributions of major features can inform the diagnostic algorithm. Purpose To perform a systematic review and individual patient data meta-analysis to establish the probability of HCC for each LI-RADS major feature using CT/MRI and contrast-enhanced US (CEUS) LI-RADS in patients at high risk for HCC. Materials and Methods Multiple databases (MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and Scopus) were searched for studies from January 2014 to September 2019 that evaluated the accuracy of CT, MRI, and CEUS for HCC detection using LI-RADS (CT/MRI LI-RADS, versions 2014, 2017, and 2018; CEUS LI-RADS, versions 2016 and 2017). Data were centralized. Clustering was addressed at the study and patient levels using mixed models. Adjusted odds ratios (ORs) with 95% CIs were determined for each major feature using multivariable stepwise logistic regression. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) (PROSPERO protocol: CRD42020164486). Results A total of 32 studies were included, with 1170 CT observations, 3341 MRI observations, and 853 CEUS observations. At multivariable analysis of CT/MRI LI-RADS, all major features were associated with HCC, except threshold growth (OR, 1.6; 95% CI: 0.7, 3.6; P = .07). Nonperipheral washout (OR, 13.2; 95% CI: 9.0, 19.2; P = .01) and nonrim arterial phase hyperenhancement (APHE) (OR, 10.3; 95% CI: 6.7, 15.6; P = .01) had stronger associations with HCC than enhancing capsule (OR, 2.4; 95% CI: 1.7, 3.5; P = .03). On CEUS images, APHE (OR, 7.3; 95% CI: 4.6, 11.5; P = .01), late and mild washout (OR, 4.1; 95% CI: 2.6, 6.6; P = .01), and size of at least 20 mm (OR, 1.6; 95% CI: 1.04, 2.5; P = .04) were associated with HCC. Twenty-five studies (78%) had high risk of bias due to reporting ambiguity or study design flaws. Conclusion Most Liver Imaging Reporting and Data System major features had different independent associations with hepatocellular carcinoma; for CT/MRI, arterial phase hyperenhancement and washout had the strongest associations, whereas threshold growth had no association. © RSNA, 2021 Online supplemental material is available for this article
Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides
This is the published version. Copyright 2012 Nature Publishing GroupCementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein control over the biomineral formed, we afford new insights into the evolution of protein–mineral interactions. By exploiting small peptide domains of native proteins, our understanding of structure–function relationships of biomineralizing proteins can be extended and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the morbidity associated with tooth loss
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study
OBJECTIVES: To describe the characteristics and outcomes of patients with acute respiratory distress syndrome with or without spontaneous breathing and to investigate whether the effects of spontaneous breathing on outcome depend on acute respiratory distress syndrome severity. DESIGN: Planned secondary analysis of a prospective, observational, multicentre cohort study. SETTING: International sample of 459 ICUs from 50 countries. PATIENTS: Patients with acute respiratory distress syndrome and at least 2 days of invasive mechanical ventilation and available data for the mode of mechanical ventilation and respiratory rate for the 2 first days. INTERVENTIONS: Analysis of patients with and without spontaneous breathing, defined by the mode of mechanical ventilation and by actual respiratory rate compared with set respiratory rate during the first 48 hours of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: Spontaneous breathing was present in 67% of patients with mild acute respiratory distress syndrome, 58% of patients with moderate acute respiratory distress syndrome, and 46% of patients with severe acute respiratory distress syndrome. Patients with spontaneous breathing were older and had lower acute respiratory distress syndrome severity, Sequential Organ Failure Assessment scores, ICU and hospital mortality, and were less likely to be diagnosed with acute respiratory distress syndrome by clinicians. In adjusted analysis, spontaneous breathing during the first 2 days was not associated with an effect on ICU or hospital mortality (33% vs 37%; odds ratio, 1.18 [0.92-1.51]; p = 0.19 and 37% vs 41%; odds ratio, 1.18 [0.93-1.50]; p = 0.196, respectively ). Spontaneous breathing was associated with increased ventilator-free days (13 [0-22] vs 8 [0-20]; p = 0.014) and shorter duration of ICU stay (11 [6-20] vs 12 [7-22]; p = 0.04). CONCLUSIONS: Spontaneous breathing is common in patients with acute respiratory distress syndrome during the first 48 hours of mechanical ventilation. Spontaneous breathing is not associated with worse outcomes and may hasten liberation from the ventilator and from ICU. Although these results support the use of spontaneous breathing in patients with acute respiratory distress syndrome independent of acute respiratory distress syndrome severity, the use of controlled ventilation indicates a bias toward use in patients with higher disease severity. In addition, because the lack of reliable data on inspiratory effort in our study, prospective studies incorporating the magnitude of inspiratory effort and adjusting for all potential severity confounders are required
- …