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Cementomimetics—constructing a cementum-like
biomineralized microlayer via amelogenin-derived
peptides

Mustafa Gungormus1,*, Ersin E Oren1,*, Jeremy A Horst2,*, Hanson Fong1, Marketa Hnilova1,
Martha J Somerman3, Malcolm L Snead1,4, Ram Samudrala1,5, Candan Tamerler1 and Mehmet Sarikaya1

Cementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors

the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to

the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native

proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a

case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of

hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as

amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on

demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several

implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein

control over the biomineral formed, we afford new insights into the evolution of protein–mineral interactions. By exploiting small

peptide domains of native proteins, our understanding of structure–function relationships of biomineralizing proteins can be extended

and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential

clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the

morbidity associated with tooth loss.
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INTRODUCTION

The distinguishing characteristics of dental bioceramic hard tissues,

e.g., enamel, cementum and dentin, are achieved due to the amount of

the hydroxyapatite (HAp) crystallites formed, their nano- and micro-

structural characteristics and their overall architecture. These charac-

teristics originate from the tissue-specific extracellular matrix (ECM)

proteins found within each tissue during its development1–5 and

which act as regulators of nucleation and growth of biological apa-

tite.1–2,6 These ECM proteins, therefore, offer great potential in repair-

ing mineralized tissues of the teeth damaged due to carries, trauma or

periodontal disease. Periodontal disease is caused by the host’s inflam-

matory reaction to the bacterial biofilms that adhere to the tooth

surface7 and results in periodontal tissue destruction. It is one of the

most prevalent infections of mankind, and left unchecked, will result

in the loss of the teeth and surrounding tissue, including bone.7–8 The

use of dental ECM proteins as therapeutic agents to repair damage

caused by such diseases has been limited so far due to technical and

financial limitations in the identification, extraction and purification

of these proteins. As the therapeutic use of native or recombinant

ECM proteins for re-mineralization is not yet viable, research has

focused on developing peptide mimics or identifying functional

domains within these naturally occurring proteins.8–16 As a case

study, we used the enamel protein, amelogenin, to identify similarity

regions, i.e., domains with similar amino acid sequences, with a set of

HAp-binding peptides (HABPs) that we previously experimentally

selected.17 Amelogenin is expressed during tooth enamel formation

and contributes to the hardest and most highly mineralized tissue

in the human body by exerting control over the dimension and
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directionality of HAp crystals formed within the assembled protein

matrix.18–20 Although certain regions of amelogenin amino-acid

sequence are proposed to interact with calcium phosphate minerals,

an extensive mapping of putative crystal interaction or mineral

nucleation domains is still lacking.21–22 Here, we show that func-

tional peptides can be derived from amelogenin using phage dis-

play-selected peptides as a knowledge base and identifying next gene-

rations of peptides by bioinformatics. We then show that these

peptides can function to direct the cell-free re-mineralization of

the tooth root resulting in a cementomimetic (e.g., cementum-like)

material and, thus, can contribute to cell-based regeneration of perio-

dontal tissue.

MATERIALS AND METHODS

Combinatorial selection of peptides

Selection of the peptides by phage display and the HAp binding and

mineralization characterization were carried out as previously

described23 (see Supplementary Information).

Similarity analysis

The amino-acid sequences obtained from the combinatorially selected

peptides have been used as the data source for our knowledge-based

design. Using the methods previously described by Oren and collea-

gues,17 two scoring matrices, HAp12I and HApC7CI, were derived for

the peptides selected from the 12- and c7c-phage libraries (New

England BioLabs Inc., Ipswich, MA, USA), respectively. The Point

Accepted Mutation 250 (PAM 250) was chosen as the seed matrix to

optimize the new matrices specific to the selected peptides. The PAM

matrix gives substitution probabilities for sequences that experience a

certain number of point mutations in every hundred amino acids.

Therefore, PAM 250 reflects the probabilities for 250 point mutations

for every 100 amino acids. PAM 250 was modified to compensate

for the relative abundance of amino acids within the libraries used

to select the HABP and for the codon usage of the host organism

(Escherichia coli K12 ER2738) used to amplify the phages. To identify

the sequence similarities between the selected peptides with the

recombinant mouse 180 amino acid long amelogenin (rM180), we

divided the rM180 amino-acid sequence into segments with the same

length as those from the phage libraries (i.e., 7 or 12 amino acids). Each

iteration generated a segment starting from the next amino acid,

therefore, creating all possible 7 or 12 amino-acid segment lengths

for the whole M180 sequence. Then, each segment was compared with

each HABP and was given a similarity score. Once every combination

of the HABPs and amelogenin segments were compared, regions

that demonstrated high similarity scores against both libraries were

overlapped. These coinciding high similarity regions were picked as

the putative strong binding regions (see Supplementary Fig. S3). In

the same way, coinciding low similarity regions were picked as the

putative weak binding regions. These regions were then refined by

protein structure prediction, Ca21 ion-binding domain predictions and

meta-functional signature analyses (see Supplementary Information).

A schematic description of the design process is shown in Figure 1a.

Peptide synthesis

rM180 amelogenin was created as described previously.24 The

amelogenin-derived peptides (ADPs) were synthesized by standard

solid phase peptide synthesis technique on Wang resin using

F-moc chemistry and HBTU activation. CSBio 336s (CSBio, Menlo

Park, CA, USA) automated peptide synthesizer was used for the

synthesis. The resulting resin-bound peptides were cleaved and

side-chain-deprotected using Reagent K (trifluoroacetic acid/thioani-

sole/H2O/phenol/ethanedithiol (87.5 : 5 : 5 : 2.5)), and precipitated by

cold ether. The crude peptides obtained were purified by reverse phase

high performance liquid chromatography up to a .98% purity

(Gemini 10m C18 110A column). The masses of the purified peptides

were checked by mass spectroscopy using a MALDI-TOF mass

spectrometer (Bruker Daltonics, Billerica, MA, USA).

Binding analysis via quartz crystal microbalance

Calcium phosphate-coated quartz crystal microbalance (QCM) electro-

des were purchased commercially (Q-Sense, Västra Frölunda, Sweden).

The diameter of the crystals and electrodes were 8.8 and 5.0 mm,

respectively. The oscillation electronic circuit was a typical Collpits

oscillator, which had a buffer amplifier. A 12 V direct current was

applied to the oscillator circuit to drive the crystal, and the frequency

was measured with a Hewlett-Packard 53131A frequency counter sam-

pling at 225 Hz (Universal Counter; Agilent Technologies, Santa Clara,

CA, USA). After the crystal was mounted in the cell, they were cleaned

and dried with high-purity nitrogen gas and used immediately. To

establish a stable baseline, a sufficient amount of buffer solution was

introduced into the cell before adding the peptide. The frequency

change of the crystal in pure buffer solution was recorded for 30–

60 min. After this step, the desired amount of ADPs was introduced

into the cell and the frequency change was recorded continuously.

In vitro solution biomineralization

An alkaline phosphatase based mineralization model was used as

described before to investigate the mineralization behaviors of the

peptides22 (see Supporting Information for details).

Ex vivo re-mineralization of tooth root

The cementum-root stock blocks were prepared from single rooted,

extracted adult teeth collected at the University of Washington Dental

School clinics. No individual identifiers were used and the use of such

material complied with the Institutional Review Board guidelines. The

teeth were kept in 70% ethanol solution at 4 6C until the specimens

were prepared. Cylindrical blocks of 4 mm diameter were cut from

the acellular cementum, close to the cementoenamel junction using

a trephine bur. The teeth were kept immersed in 70% ethanol-

phosphate-buffered saline (PBS) during the cutting to prevent heat

damage due to friction. The cut cylindrical blocks were cleaned of

contaminating material using PBS and demineralized with 35%

phosphoric acid gel for 10 s. The specimens were stored in 70%

ethanol-PBS solution at 4 6C until used.

Prior to coating the specimens with the peptide, the previously

cut cylindrical blocks were rehydrated and equilibrated for 2 h in

24 mmol?L21 Tris-HCl buffer, pH 7.4. The lyophilized ADP was dis-

solved in 24 mmol?L21 Tris-HCl buffer, pH 7.4 to a final concentra-

tion of 0.4 mmol?L21. A 50 mL drop of the ADP solution was dropped

on top of the specimens and left on the specimen for 10 min at room

temperature in a water saturated chamber to prevent evaporation.

Control specimens were identically prepared only by dropping 50 mL

of buffer alone. At the end of 10 min, the samples were rinsed twice

with deionized water. Fluorescent microscopy analysis was performed

with fluorescein isothiocyanate-labeled ADP.

Solutions of 9.6 mmol?L21 CaCl2 and 5.6 mmol?L21 PO4
32, a

mixture of NaH2PO4–H2O and Na2HPO4–7H2O, were prepared in

24 mmol?L21 Tris-HCl buffer, pH 7.4. The peptide-coated and non-

coated control specimens were placed in 300 mL of Ca21 solution

and an equal volume of PO4
32 solution was added to achieve a final
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concentration of 4.8 mmol?L21 of Ca21 and 2.8 mmol?L21 of PO4
32.

The specimens were incubated in the mineralization solution for 2 h at

37 6C in a water saturated atmosphere, removed from the mineraliza-

tion solution and rinsed with 24 mmol?L21 Tris-HCl buffer, pH 7.4.

The specimens were kept in 70% ethanol solution at 4 6C until the

time of characterization. A schematic explanation of the ex vivo

re-mineralization is shown in Figure 2.

Mechanical properties of the cementomimetic layer

Mechanical properties of the cementomimetic layer were assessed

by nanoindentation and qualitative mechanical abrasion tests. The

samples were prepared by first infiltrating from the top of the

cementomimetic layer with room-temperature-cure epoxy (Allied

High Tech, Inc., Rancho Dominguez, CA, USA) to provide a continuous

volume for indentation characterization. After the epoxy was cured, the

sample was ground and polished to expose the interior in the cross-

section of the specimen, then ultra-microtomed to achieve a smooth

surface for nanoindentation. Twenty indentations each were taken using

an atomic force microscope (attached with a vertical indentor) on

mineralized dentin region (indentations were made on intertubular den-

tin), demineralized dentin regions (adjacent to the cementomimetic

layer), and the cementomimetic layer (see Supplementary Fig. S7).

Qualitative mechanical analysis was carried out by ultrasonica-

tion and mechanical abrasion. For ultrasonication, specimens were

Figure 1 Identification of ADPs. (a) Flowchart showing the design steps for identifying the ADPs. (b) High- and low-similarity amino-acid domains among the rM180

and two experimentally selected HABP sets. Each bar represents one amino acid and the amino-acid domains above the baseline represent the high similarity, while

those below represent low similarity regions. The overlapped plot shows the potential calcium ion-binding domains (red arrows). Note that the majority of the highest

potential domains coincide with the high-similarity regions (arrow heads). (c) Computationally determined molecular structure for rM180 amelogenin showing position

of (folded) ADP7 (red) within rM180 (see Supplementary Information for further details). (d) Positions of the ion-binding domains (blue circles) on rM180. (e) The

locations of the ADPs along rM180 (blue) with red colored segments represent the high-similarity regions and green colored segments represent the low-similarity

regions. ADP, amelogenin-derived peptide; HABP, hydroxyapatite-binding peptide; rM180, recombinant mouse 180 amino acid long amelogenin.
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mounted on scanning electron microscopy (SEM) sample mounts and

placed in 70% ethanol in a glass vial. The probe was set to 3 cm above

the specimens and ultrasound energy was applied for 15 s yielding a

total of 10 J. Mechanical abrasion was applied to the same specimens

using an electric toothbrush intended for home use (Oral B, series

4000). The specimens and the toothbrush were fixed in position allow-

ing the bristles to be brought into contact with the specimens for 1 min,

after which the samples were rinsed with 70% ethanol and analyzed

with SEM.

Cell adhesion and growth assays

Cell adhesion experiments were accomplished using cultured human

periodontal ligament (hPDL) fibroblasts. The cells were maintained

in Dulbecco’s modified Eagle medium (DMEM) (Life Sciences (for-

merly Gibco), Grand Island, NY, USA) containing 10% fetal bovine

serum supplemented with 100 units?mL21 penicillin, 100 mg?mL21

streptomycin and 2 mmol?L21 glutamine. The cells were used between

the seventh and ninth passages. Before starting the cell adhesion assays,

the mineralized specimens were taken out of the 70% ethanol solution

and equilibrated in serum-free DMEM for 2 h. The confluent hPDL

cells were suspended with 0.05% trypsin-EDTA and counted using a

hemocytometer. The equilibrated tooth specimens were placed in

24-well plates, with four specimens per well performed in triplicates.

The suspended hPDL cells were prepared in serum-free DMEM and

33104 cells per well were seeded on top of the specimens. The

specimens were incubated with the cells for 2 h at 37 6C and 5%

CO2 atmosphere. After 2 h, the specimens were rinsed with the media

and cells remaining on the surface were recovered from the surface of

the specimen with 0.05% trypsin-EDTA. The cells so obtained were

counted using CyQUANT cell proliferation assay kit (Life Sciences

(formerly Invitrogen), Grand Island, NY, USA).

After fixing with 2% glutaraldehyde in PBS for 10 min, the cells were

permeabilized with 0.1% Triton X in PBS for 2 min and blocked with

1% bovine serum albumin for 30 min and stained with Phalloidin

Alexa Fluor 488 (Invitrogen) for fluorescence microscopy observa-

tions. The cells were observed and recorded using a TE 300L micro-

scope at an appropriate wavelength and gated filters (Nikon, Tokyo,

Japan).

For proliferation assays, hPDL cells were prepared the same way

as described above for the cell adhesion assays. The specimens were

equilibrated in media and placed in 24-well plates, four specimens per

well and performed in triplicate wells. The suspended hPDL cells were

prepared in serum-free DMEM and 33104 cells per well were seeded

on top of the specimens. After 24 h, the specimens were rinsed and

transferred into new plates to prevent possible contamination of the

cells that grow on the bottom of the plate. The cells were maintained in

a water-jacketed incubator at 37 6C in 5% CO2 saturated to H2O and

the media was exchanged every 48 h with DMEM supplemented with

2% fetal bovine serum. Triplicate samples were terminated after 2-, 6-,

10- and 15-day durations. At the end of each time point, the specimens

were taken out of the wells, rinsed with serum-free DMEM, and then

with PBS. The cells were recovered from the specimen surface with

0.05% trypsin-EDTA and counted using CyQUANT cell proliferation

assay kit (Invitrogen).

RESULTS

The critical component in the newly developed cementomimetic

mineral construction is HAp-forming peptides that operate as mineral

synthesizers and control deposition of a confluent nanostructured

HAp layer. The procedure for designing these peptides is schematically

described in Figure 1. Using a phage display approach, we combina-

torially selected more than 100 HABPs from a 7-amino acid and a

12-amino acid phage peptide library and characterized their binding

affinity to the HAp mineral under near-physiological conditions.22

Since not all of the peptides selected have the same affinity to HAp,

we next categorized them into three classes: strong-, moderate- and

weak-binding peptides. Using bioinformatics classification proto-

cols,23 we derived similarity-scoring matrices for both sets of selected

septa- and dodeca-peptides. These matrices were used to systemati-

cally compare and identify similarity regions, i.e., domains of similar

amino-acid sequences between the experimentally selected HABPs

and rM180. The comparisons yielded high and low similarity regions

along the amelogenin (Figure 1b). By overlapping the high-similarity

regions from both libraries, putative crystal binding sequences

were identified, referred to as ADPs (Figure 1b and 1e). The simila-

rity analysis were refined and supported by other computational

tools, i.e., structure prediction, meta-functional signature and ion

binding domains analyses (Figure 1c and 1d) (see Supplementary

Information). Many short amino-acid sequences can be generated

by this procedure and each has the potential to be used for specific

applications requiring control over HAp formation and growth. The

putative HAp interacting regions of amelogenin having the highest

similarity, i.e., ADP1, ADP2 and ADP4, were synthesized chemically

(see Supplementary Information). For comparison, we also synthe-

sized ADPs corresponding to the previously proposed putative

Figure 2 Procedure for in vitro, cell-free synthesis of cementomimetic layer by

ADP5 on human root surfaces. Extracted human teeth are cleaned of any con-

taminating material and cylindrical pieces are cut right below the cement–enamel

junction. An aqueous solution of ADP5, the mineralization directing peptide, is

applied on the demineralized root surface. The specimen is immersed into a

mineralization solution containing calcium and phosphate ions. Cell adhesion

and proliferation is investigated on the re-mineralized root surfaces. ADP, ame-

logenin-derived peptide.
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mineral-binding regions near the C-terminus (ADP3, ADP6),25–28

non-mineral interactive (e.g., low similarity score) regions (ADP5,

ADP8) and finally ADP7, a peptide that included ADP1, ADP2 and

ADP8 (Figure 1e and Table 1). The HAp-binding affinities of these

peptides were examined via QCM and their propensity to control

formation of calcium phosphates were carried out via in vitro solution

mineralization assays and ex vivo tooth re-mineralization experiments.

Binding analysis via QCM

The dissociation constants (KD) of the peptides were determined.

The KD is an equilibrium constant that represents the concentration

necessary to achieve 50% surface coverage. Experimental binding

assays demonstrated that ADP1, ADP2, ADP4 and ADP7 exhibit

strong affinity to HAp with KD values on the order of 1 mmol?L21,

as was predicted by the similarity analysis (Figure 3a and Table 1).

Likewise, as predicted, the binding affinities of the ADP3, ADP6,

ADP5 and ADP8 were lower, with ADP5 having a significantly lower

KD (50 mmol?L21) (Figure 3a and Table 1).

In vitro solution biomineralization

We noted that there were three distinct trends of mineralization

among the tested ADPs. The majority of the peptides (ADP1, ADP2,

ADP3, ADP4, ADP6 and ADP8) exhibited similar kinetics to the

negative control, where no peptide was present. The phage display

selected HABP1 and the ADP7 identified in this study exhibited a slow

mineralization trend (Figure 3b). Interestingly, full-length rM180 and

the ADP5 exhibited a fast mineralization trend, where more than half

of the available free Ca21 was consumed at the end of the 90 min

(Figure 3b) (see Supplementary Fig. S5 for the mineralization trends

of all ADPs).

The microstructural and crystallographic analysis of the synthesized

minerals via SEM, transmission electron microscopy and X-ray dif-

fraction (XRD) revealed another interesting consequence regarding

the relationship between the mineral binding and mineralization

activity. Similar to the mineralization kinetics, three distinct trends

of mineral morphologies were observed. The majority of the peptides

(ADP1, ADP2, ADP3, ADP4, ADP6, ADP8 and HABP1) produced

spherulitic particles consistent with the formation of spherical

amorphous calcium phosphate and transformation into crystalline

phases.29–31 The amount of radiating crystalline blade-like particles

emanating from the spherulites was slightly higher for ADP1, ADP2,

ADP4 and HABP1 (strong binders) compared to ADP3, ADP6 and

ADP8 (weak binders) and to the no peptide control, an order indi-

cating that the amorphous to crystalline transformation rates were

slightly different (Figure 3c). In the case of rM180 and ADP7, how-

ever, a completely different morphology was observed. Needle-like

nanocrystals, organized into bundle-like assemblies, were observed

for rM180 and ADP7 (Figure 3d). The bundle-like assemblies

appeared to be better organized in the case of rM180, which is con-

sistent with the self-assembly properties of amelogenin and the in vitro

mineralization behavior of recombinant amelogenin.24,32–34

The particles formed in the presence of ADP5 were much smaller

spherulites with a less electron-dense core and smaller radiating crys-

tals (Figure 3c). The smaller particles sizes in the presence of ADP5

may be due to its nucleation-dominate regime, as suggested from the

data describing the mineralization kinetics (Supplementary Fig. S3).

The crystallographic analysis via XRD also confirmed that the

observed morphological differences were due to different crystal struc-

tures. In all cases except rM180 and ADP7, the minerals yielded a

broad peak around 2h of 25–306 indicating a poorly crystalline phase

(Figure 3e). In the presence of rM180 and ADP7, however, the XRD

patterns consisted of numerous sharp peaks indicative of crystalline

Table 1 Amino-acid sequences, physicochemical properties and the

dissociation constant (KD) of the ADPs used in this study

ADP MW pI Charge GRAVY KD/(mmol?L21)

ADP1 1 414.60 7.10 0 20.350 1 395

ADP2 1 328.40 7.00 0 21.067 1 611

ADP3 1 574.70 4.94 21 (24, 13) 21.862 6 397

ADP4 1 833.00 7.16 0 20.713 1 431

ADP5 2 465.60 7.16 0 (22, 12) 20.959 50

ADP6 2 630.10 3.79 12 20.952 6 247

ADP7 4 645.30 7.28 0 20.824 1 148

ADP8 1 519.80 5.96 0 20.743 314

ADP, amelogenin-derived peptide; GRAVY, grand average hydrophaticity; KD,

dissociation constant; MW, molecular weight; pI, isoelectric point.

Figure 3 Binding, mineralization, and structural characterization of mineral

products of the ADPs. (a) Binding constants, KD, of the ADPs determined by

QCM (see Supplementary Information). (b) Calcium consumption rates of mine-

ralization in the presence of ADP5 and ADP7 and rM180. (c) Calcium phosphate

minerals formed in solution in the presence of ADPs. (d) The mineral product of

ADP7 resembles those formed in the presence of rM180 in solution and these

acicular crystallites are consistent with HAp morphology. (e) XRD patterns of the

minerals formed by ADPs. Materials formed by ADP7 and amelogenin display the

characteristic peaks belonging to the HAp crystal structure, while all minerals

formed by other ADPs display weak diffraction peaks, consistent with amorph-

ous, or only loosely crystalline outcomes shown in (c). ADP, amelogenin-derived

peptide; HABP, hydroxyapatite-binding peptide; HAp, hydroxyapatite; rM180,

recombinant mouse 180 amino acid long amelogenin; XRD, X-ray diffraction.
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HAp. The major peaks were observed at 2h531.86(d50.281 nm) and

32.16(d50.278 nm) corresponding to (211) and (300) planes of HAp,

respectively.

Ex vivo re-mineralization of the tooth roots

Human cementum discs were prepared as described in the section on

‘Materials and methods’ and as illustrated in Figure 2. Fluorescent

microscopy analysis with fluorescein-labeled ADP5 showed that the

ADP5 readily adsorbs on the demineralized surface of human root

stock cementum and remains on the surface after extensive washing.

Since the microscope was calibrated to the emission of the control

samples, the background emission was eliminated in both samples.

The human samples after cleaning and etching reveal that the

expected dentinal tubules characteristic of the dentinoenamel junc-

tion, with diameters about 1 mm, are clearly visible on the fluo-

rescein isothiocyanate-labeled ADP-coated samples (see Supplementary

Fig. S6).

ADP5 resulted in a substantial difference in the re-mineralization

profiles of the human root stock cementum surface as observed via

SEM and energy-dispersive X-ray spectroscopy analysis. At the end of

2 h, no substantial re-mineralization occurred on the control samples

consisting of no peptide coating (Figure 4a). On the other hand, a

continuous layer of mineral covering the whole surface of the spe-

cimen was observed on the ADP5-coated specimens (Figure 4b).

The morphology of the newly formed mineral was plate-like crystals

growing out of the surface of the underlying dentine. Elemental com-

position analysis by EDS displayed no observable Ca or P peaks from

the control sample containing no peptide, where, in contrast, substan-

tial Ca and P peaks were observed from the ADP5-coated samples

(Figure 4a and 4b inserts, respectively). Both SEM and transmission

electron microscopy cross-sectional analysis showed that ADP5

yielded a 10–15 mm thick mineral layer that appears to be well inte-

grated with the underlying dentin (Figure 4c and 4d). Moreover, the

thickness of the cell-free biomimetic cementum layer compares well to

the thickness of native human acellular cementum.

Mechanical properties of the cementomimetic layer

As shown in Table 2, the cementomimetic mineral layer exhibited

comparable elastic modulus and hardness to the native human cemen-

tum.35 The large standard deviation observed for the cemenotomi-

metic layer was noted and was likely due to the less homogeneous

distribution of mineral than that observed for native mineralized den-

tin or cementum.

We also tested whether the newly formed mineral layer can survive

mechanical stresses produced by ultrasonication and mechanical abra-

sion (brushing). SEM observations showed that the plate-like mor-

phology of the minerals was somewhat distorted after ultrasonication

and brushing. However, as confirmed with energy-dispersive X-ray

spectroscopy, the mineral was still attached to the underlying dentin

(see Supplementary Fig. S8).

Cell adhesion and growth assays

Cell attachment assays showed that the hPDL cells attach to the mine-

ralized surfaces more effectively compared to their non-mineralized

control surfaces. Quantification of cells recovered after 2-h adhe-

sion period showed that 23.2% of the cells were adherent on the

non-mineralized control surface, whereas 60.6% of the cells adhered

to the biomimetic mineralized surface after 2 h of incubation

(Figure 4e).

Figure 4 Structural and functional characteristics of the cementomimetic

layer formed on the root of human tooth by ADP5. (a and b) SEM images of

the demineralized (a) and (b) ADP5-formed cementomimetic layer revealing

uniform nanocrystals with a Ca/P ratio of 1.67 obtained from EDX () spectra

(insets). (c) TEM images and the electron diffraction pattern of the newly formed

cementomimetic mineral layer in cross-section showing HAp crystallites. (d) SEM

image of mechanically separated cementomimetic mineral layer displaying uni-

form thickness of crystallized HAp. (e) Attachment of hPDL cells on control and

cementomimetic mineral layer. (f) Proliferation of the hPDL cells on control,

uncoated, root stock compared to ADP-induced cementomimetic mineral layer.

(g and h) Fluorescent microscopy image showing F-actin. Cell attachment with-

out formation of organized actin network on control surface (g) is compared to

those on ADP-induced cementomimetic mineral layer that reveals a well-orga-

nized actin cytoskeleton and lamellapodia (h). EDX, energy dispersive X-ray;

HAp, hydroxyapatite; hPDL, human periodontal ligament; SEM, scanning elec-

tron microscopy; TEM, transmission electron microscopy.

Table 2 Mechanical properties of cementomimetic layer as mea-

sured by nanoindentation (n520 indentations) GPa

Layer Er H

Cementomimetic layer 1967 0.760.5

Native cementum 1564 0.860.3

Mineralized dentin 2663 1.060.2

Demineralized dentin 563 0.260.2

Er, Young’s modulus; H, hardness.
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Proliferation assays showed that the hPDL cells grow more effi-

ciently on the biomimetic mineralized surfaces compared to non-

mineralized control surfaces. At the end of 15 days, hPDL cells have

reached more than twice the number cells on the biomimetic miner-

alized surfaces compared to the control surface (Figure 4f). These data

suggest that the cementomimetic mineral layer provides a favorable

environment for the hPDL cells to attach and to proliferate.

Fluorescence imaging showed that, after initial adhesion, the cells

organize their cytoskeleton on the mineral layer better (Figure 4h)

than the same cells growing on control surfaces (Figure 4g).

DISCUSSION

The quantitative diffraction and microscopy analyses of the minerals

produced by the ADPs revealed that, among the designed peptides,

only ADP7, the longest of the similarity regions, and native rM180

produced needle-like, crystalline HAp particles, while the others

formed crystalline spherulite particles (Figure 3c–3e). Interestingly,

the N-terminal ADP5, which revealed no binding affinity to HAp,

exerted a kinetic control over calcium phosphate nucleation at a level

similar to full-length rM180 amelogenin protein (Figure 3b). The fact

that the ADP5 did not demonstrate a high affinity to HAp indicates

that control over nucleation is governed by interactions with pre-

cursor ions. As suggested previously in the literature, these data indi-

cate that the amelogenin protein may be divisible into individual

domains that exert separate control over calcium phosphate crystal

nucleation, growth and morphogenesis.36–40

Taken together, these data indicate that the strong binding affinity

by a peptide to its mineral substrate does not necessarily always trans-

late into mineralization directing activity. The fact that the ADP5

showed no significant binding affinity towards HAp but resulted in

faster kinetics implies that the ADP5 might be interacting with the

soluble precursor ions rather than the mineral surface. The two adja-

cent pairs of oppositely charged residues at positions 9–10 and 19–20

within ADP5 may be responsible for attracting soluble Ca21 and

PO4
32 and creating an increased local supersaturation and, thereby,

decreasing the nucleation barrier. In contrast, the strong interaction

between ADP7 and the mineral surface indicates that a change in the

mineral–solution interfacial energy is responsible for the observed

mineralization behavior. It has been reported that biomolecules, such

as citrate, can alter the interfacial energy of kinetically favorable meta-

stable calcium phosphate phases and trigger the phase transformation

towards thermodynamically favorable HAp.41–42 A similar effect may

be responsible, due to the relatively high affinity of ADP7 to the min-

eral surface. Binding of a peptide on a crystal surface is determined by

both the conformation (side chain availability) of the peptide and the

atomic configuration of the crystal at the binding interface.43–45 We

speculate that the formation of HAp instead of other metastable CaP

phases, such as amorphous calcium phosphate, octacalcium phos-

phate or tricalcium phosphate, in the presence of ADP7, is due to a

specific conformation of the peptide and the arrangement of Ca and P

sites on the crystal surface that maximizes the binding energy and, in

turn, reduces the interfacial energy barrier required to overcome phase

transformation.

The binding and biomineralization behaviors of ADP5, ADP7 and

rM180 imply an interesting mechanism for amelogenin-mediated

mineralization during the formation of enamel. The fact that two

different ADPs emulate different aspects of the mother protein brings

up the question whether these peptides might be different functional

regions within amelogenin.37 Namely, ADP5 may be the region

responsible for increased mineralization kinetics through increasing

local supersaturation and ADP7 may be the region responsible for

favoring the phase transformation towards HAp through altering

the interfacial energy. However, the answers to these questions are

the focus of another ongoing study.

The range of characteristics exhibited by these individual ADPs

represents potential molecular agents to consider for engineering

and biomedical applications involving hard tissue repair and replace-

ment where specific control features for the mineral phase are desired.

Peptide-assisted re-mineralization of dental tissue defects offers a sig-

nificant potential for clinical use. Towards this end, we asked whether

or not the biomimetic cementum-like mineral layer has a favorable

effect on cell behavior in vitro. Cultured hPDL were selected for invest-

igation since these are the predominant cell types that root surfaces are

exposed to in vivo, and further, these cells, when appropriately trig-

gered, can carry on important functions in the repair and regeneration

of periodontal tissues.46–50 Cell adhesion and cell proliferation assays,

performed on the surface of ADP5-mediated cementum-like tooth

material in the absence of serum-derived factors, showed that the

nanostructured mineral layer favors both the adhesion and prolifera-

tion of cells derived from the periodontium (Figure 4e and 4f). We

are presently refining conditions for generating the cementomimetic

layer seeking to engineer further improvements to attachment and

proliferation so as to improve the regenerative competency of this

material.

In conclusion, the work described here has several significant impli-

cations in peptide-assisted biomineralization. First, we describe a new

protocol for identifying peptide sequences from among native pro-

teins associated with HAp-containing tissues that are critical to their

control over biomineralization. A similar analysis of extracellular

matrix proteins associated with biominerals formed by unicellular

organisms (e.g., magnetotactic bacteria), invertebrate (sponges, mol-

lusks) and vertebrate animals can reveal other unique amino-acid

domains that regulate the mineral formation and growth for each of

their variety of inorganic compounds (magnetite, silica and calcium

carbonate polymorphs).51 Biomineralization is fundamental to many

living organisms and the range of precipitated minerals reflects the

elements of the periodic table. Elaborating the mechanism for protein

control over the biominerals formed in these systems will afford new

insights into the evolution of protein–mineral interactions.52 In the

case of enamel, amelogenin is a member of the class of intrinsically

disorganized proteins.53 By restricting a structural analysis to a small

domain of a larger protein, such as that defined by ADP5, it is possible

to expand our understanding of structure–function relationships,

portending the capacity to decipher a relationship between a peptide

and a chemical precipitate, and then to use such information for

their practical utility to engineer material formation technologies

(e.g., bionanomanufacturing). Secondly, as demonstrated in this

study, strong binding affinity of a peptide to an inorganic solid is

not necessarily an indication of its mineral formation capability.

Thirdly, the cementomimetic layer formed by ADP5 has a clinical

application potential to repair diseased root surfaces, both those

caused by caries and periodontal disease, and to promote regenera-

tion of periodontal tissue, reducing the morbidity associated with

tooth loss.
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