59 research outputs found

    Nutrients required for developing the fetus in dairy cattle

    Get PDF
    "Approved, C.H. Eckles."Typescript.Charts are pasted in.A cow may use feed for five purposes as follows: 1) Maintenance 2) Milk Production 3) Increasing body weight 4) Growth, if not mature 5) Developing the fetus. Feeding standards have been established experimentally for all of these except fetal development. It is customary for feeders to be more liberal in feeding pregnant animals, probably due to the general belief that developing the fetus is more or less a tax upon the maternal organism. Feeders often say that cows in a lean or moderate state of flesh will drop calves larger and healthier than calves from excessively fat cows. This is thought to be due to the fact that the space for the development of the fetus is restricted in fat animals or possibly the blood supply is reduced. The author has seen cows so lean at the time of parturition that for several days following, they were too week to stand, yet the calves were of normal size and healthy. The mother in such cases has drawn upon the materials in the body to supply nutrients for the fetus. The amount required in such cases and in normal cases is hard to determine. In the experiments conducted at this station and reported in this thesis an attempt has been made to measure the nutrients required for fetal development by the changes occurring in the body weight of the mother. The inaccuracy in using body weights as a measure of nutrients used is recognized, yet other than the respiration calorimeter no method seemed more adequate than weighing. It is apparent that these experiments serve to demonstrate only in a practical way the nutrients required to develop the fetus.Includes bibliographical reference

    Increase in invasive Streptococcus pyogenes M1 infections with close evolutionary genetic relationship, Iceland and Scotland, 2022 to 2023

    Get PDF
    Group A Streptococcus isolates of the recently described M1UK clade have emerged to cause human infections in several European countries and elsewhere. Full-genome sequence analysis of M1 isolates discovered a close genomic relationship between some isolates from Scotland and the majority of isolates from Iceland causing serious infections in 2022 and 2023. Phylogenetic analysis strongly suggests that an isolate from or related to Scotland was the precursor to an M1UK variant responsible for almost all recent M1 infections in Iceland

    Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD(+)-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide.Knut and Alice Wallenberg Foundation Swedish Research Council Houston Methodist Hospital Fondren Foundatio

    Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes

    Get PDF
    For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. IMPORTANCE The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease.Peer reviewe

    Population Genomic Molecular Epidemiological Study of Macrolide-Resistant Streptococcus pyogenes in Iceland, 1995 to 2016: Identification of a Large Clonal Population with a pbp2x Mutation Conferring Reduced In Vitro ÎČ-Lactam Susceptibility

    Get PDF
    Publisher's version (Ăștgefin grein)Resistance to macrolide antibiotics is a global concern in the treatment of Streptococcus pyogenes (group A Streptococcus [GAS]) infections. In Iceland, since the detection of the first macrolide-resistant isolate in 1998, three epidemic waves of macrolide-resistant GAS infections have occurred, with peaks in 1999, 2004, and 2008. We conducted whole-genome sequencing of all 1,575 available GAS macrolide-resistant clinical isolates of all infection types collected at the national reference laboratory in Reykjavik, Iceland, from 1998 to 2016. Among 1,515 erythromycin-resistant isolates, 90.3% were of only three emm types, emm4 (n = 713), emm6 (n = 324), and emm12 (n = 332), with each being predominant in a distinct epidemic peak. The antibiotic efflux pump genes, mef(A) and msr(D), were present on chimeric mobile genetic elements in 99.3% of the macrolide-resistant isolates of these emm types. Of note, in addition to macrolide resistance, virtually all emm12 isolates had a single amino acid substitution in penicillin-binding protein PBP2X that conferred a 2-fold increased penicillin G and ampicillin MIC among the isolates tested. We conclude that each of the three large epidemic peaks of macrolide-resistant GAS infections occurring in Iceland since 1998 was caused by the emergence and clonal expansion of progenitor strains, with macrolide resistance being conferred predominantly by inducible Mef(A) and Msr(D) drug efflux pumps. The occurrence of emm12 strains with macrolide resistance and decreased beta-lactam susceptibility was unexpected and is of public health concern.This study was supported in part by the Fondren Foundation, Houston Methodist Hospital and Research Institute, and National Institutes of Health grants AI139369 and AI146771 (to J.M.M.).Peer Reviewe

    Global Genetic Structure and Molecular Epidemiology of Encapsulated Haemophilus influenzae

    Get PDF
    A collection of 2,209 isolates of six polysaccharide capsule types of Haemophilus influenzoe, including 1,975 serotype b isolates recovered in 30 countries was characterized for electrophoretically demonstrable allele profiles at 17 metabolic enzyme loci. Two hundred eighty distinct multilocus genotypes were distinguished, and cluster analysis revealed two primary phylogenetic divisions. The population structure of encapsulated H. influenzae is clonal. Currently, most of the invasive disease worldwide is caused by serotype b strains of nine clones, Strains producing serotype c, e, and f capsules belong to single divisions and have no close genetic relationships to strains of other serotypes, Serotype a and b strains occur in both primary phylogenetic divisions, probably as a result of transfer and recombination of serotype-specific sequences of the cap region between clonal lineages. A close genetic relatedness between serotype d isolates and some strains of serotypes a and b was identified, There are strong patterns of geographic variation, on an intercontinental scale, in both the extent of genetic diversity and the clonal composition of populations of encapsulated strains, The analysis suggests that the present distribution of clones is, in part, related to patterns of racial or ethnic differentiation and historical demographic movements of the human host population

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of PĂ©cs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna GrĂŠcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. AteƟ, E. GĂŒneƟ and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de ComunicaciĂłn MĂłnica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution
    • 

    corecore