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Group A  Streptococcus  isolates of the recently 
described M1UK  clade have emerged to cause 
human infections in several European countries and 
elsewhere. Full-genome sequence analysis of M1 
isolates discovered a close genomic relationship 
between some isolates from Scotland and the majority 
of isolates from Iceland causing serious infections 
in 2022 and 2023. Phylogenetic analysis strongly 
suggests that an isolate from or related to Scotland 
was the precursor to an M1UK  variant responsible for 
almost all recent M1 infections in Iceland.

A new emergent genetic variant of type  emm1  group 
A  Streptococcus  (GAS) known as M1UK  was recently 
discovered during a period of increased scarlet fever 
activity and invasive infection notifications in England 
[1]. The M1UK  variant over-expresses streptococcal 
pyrogenic exotoxin A (SpeA, also known as scarlet fever 
toxin), a GAS virulence factor [1-3]. The M1UK variant has 
been identified in several European and North American 
countries, commonly in conjunction with surges in GAS 
infections occurring in 2022 and 2023 [4-14]. While 
investigating recent surges in severe invasive GAS 
(iGAS) infections in Scotland and Iceland using whole 
genome sequencing (WGS), we discovered a very 
close genetic relationship between several M1UK  from 
Scotland and all M1UK  isolates from Iceland. Given the 
geographical separation, this finding was unexpected. 
The GAS population genomic data are consistent with 
transmission of a single M1UK  strain from Scotland to 

Iceland, where it spread extensively, causing nearly all 
M1 invasive infections in 2022 and 2023.

iGAS infection surge
In Iceland where current iGAS surveillance encom-
passes the entire populace, iGAS infections increased 
strongly in the latter half of 2022, extending into the 
first half of 2023 (Figure 1). The population-adjusted 
iGAS attack rate for the first half of 2023 (11.9/100,000) 
was 2.7-fold higher than the mean (4.4/100,000) for 
the 20 years preceding the COVID-19 pandemic (2000–
2019). The increase in iGAS infections was greatest for 
children younger than 6 years, in whom it increased 
8.2-fold from a mean of 1.7 cases per year for 2000–
2019 to 14 cases in the first half of 2023. Although 
the surge involved multiple  emm  types, M1 was most 
prevalent, causing 48 of 75 iGAS infections in 2023 [10]. 
Although less comprehensive surveillance information 
is available for Scotland, a similar substantial increase 
in iGAS infections in 2022 and 2023 occurred in central 
Scotland, with M1 isolates being most prevalent and 
young children disproportionately affected [6,15].

Whole genome sequencing
The GAS M1 isolates from Scotland (n = 250; col-
lected 2014–2023) and Iceland (n = 45, collected 
between November 2022 and November 2023) were 
cultured from normally sterile sources such as blood 
or deep tissue, and identified by standard micro-
biological laboratory procedures at Landspitali (the 
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National University Hospital of Iceland) in Reykjavik 
or at the Scottish Microbiology Reference Laboratory 
in Glasgow, where isolates are referred as part of the 
National invasive GAS surveillance programme. Most 
Icelandic patients were from the Reykjavik region. Two 
isolates were cultured from patients hospitalised in 
Akureyri, the largest community in northern Iceland. 
The genomes of all isolates from Iceland and Scotland 
were characterised by Illumina short-read sequencing 
[16]. In addition, all 45 Icelandic and 10 of the Scottish 
isolates were characterised using Oxford Nanopore 
Technology long-read sequencing [16]. To place the 
strains from Scotland and Iceland within a larger phy-
logenetic context, we compared them with publicly 
available WGS data for 1,714 M1 isolates collected in 
nine countries on three continents between 2005 and 
2023 (19 years) (Table). Individual isolate character-
istics are listed in  Supplementary Table S1. Most of 
these isolates (n = 1,958, 97%) were collected after the 
2010 emergence of the earliest known M1UK isolate. The 
phylogenetic tree based on the WGS data (Figure 2A) 
shows two major branches with an M1Global  (n = 511) 
and an M1UK clade (n = 1,343) separated by a subset of 
genetically intermediate isolates (n = 58 M1Int). Of the 
isolates from Iceland, 41 belonged to the M1UK  clade, 
and all 41 were closely related to one another and nine 
phylogenetically allied isolates from Scotland. These 
50 allied isolates were genetically distinct and located 
on a separate branch from all other M1UK  isolates. The 
isolates from Scotland were proximal to the isolates 
from Iceland, showing the Scottish isolates to be the 
evolutionary precursors. 

SIC genetic diversity
The  sic  gene encodes the extracellular streptococcal 
inhibitor of complement protein that contributes to 
enhanced evasion of immune functions. It is the most 
highly polymorphic gene in M1 GAS, a feature that 
has been exploited in epidemiological and population 
genetical studies [17-22]. To seek additional evidence 
supporting the hypothesis that the closely allied 
M1 isolates from Iceland and Scotland shared a very 

recent common ancestor, we analysed allelic variation 
in the  sic  gene using both Illumina assemblies for all 
2,009 isolates and hybrid sequenced/assembled closed 
genomes for the allied isolates. If the phylogenetically 
allied isolates share a very recent common ancestor, 
we reasoned that they would have the same 
unique  sic  allele. In the 2,009 M1 strains, BLASTN 
search identified  sic  assembled on a single contig 
for 1,430 strains (71.2%). There were 167  sic  alleles 
encoding 167 SIC variants (alleles and variants listed 
individually in  Supplementary Table S2, and given for 
individual isolates in  Supplementary Table S1), con-
sistent with the rapidly evolving hypervariable nature 
of this gene and protein. Importantly, although 167 
alleles were identified, the majority (38 of 50; 76%) of 
the closely related isolates from Scotland and Iceland 
had the same  sic  allele (designated  sic0004), and 
these were the only isolates to have this allele (Figure 
2B). Thus, our  sic  data provided additional molecular 
evidence that the phylogenetically allied isolates from 
Scotland and Iceland were related by recent descent.

Discussion
Although the actual transmission sources and routes 
are unknown, based on the WGS data currently avail-
able, the most parsimonious explanation for the close 
genetic relationship between the allied M1UK  isolates 
posits direct introduction of a single isolate from 
Scotland to Iceland, probably by an individual with 
pharyngitis or an asymptomatic carrier. Iceland is a 
major tourist destination, with ca 1.9 million foreigners 
visiting for example in 2022, including 13% from the 
United Kingdom [23]. Identification of the unexpected 
genetic link between the isolates from these two coun-
tries was made possible by WGS analysis of compre-
hensive longitudinal samples available from Iceland 
and Scotland, stressing the importance of reference 
and public health laboratories in providing new action-
able information about isolate dissemination and 
transmission routes.

The M1UK  variant terminology was initially used 
to describe a lineage that differed from many 
contemporary circulating M1 strains by 27 shared single 
nucleotide polymorphisms (SNPs; 26 core and one 
phage) [1]. This number of SNPs is similar to the mag-
nitude of core genome SNPs differentiating two clades 
of M1 strains causing human infections in the last dec-
ade of the 20th century and first decade of the 21st 
century [24]. Similarly, an emergent lineage of isolates 
has been identified in Denmark (n = 97), which differed 
from all other M1Global  and M1UK  isolates in Denmark 
by 15 SNPs in the core genome and was designated 
M1DK  [10]. In the present analysis, we found that all 41 
Iceland M1 isolates with the 27 SNPs characteristic of 
the M1UK lineage differed from all other M1UK (n = 1,293, 
omitting the nine closely related Scottish isolates) and 
M1Global  (n = 511) isolates by 15 and 43 SNPs in the core 
genome, respectively. The details of these individual 
SNPs are appended in  Supplementary Table S3. We 
designated the M1UK  sublineage causing infections in 

Figure 1
Group A streptococcus invasive infections per 100,000 
population in Iceland, January 1975–June 2023 (n = 495)
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Iceland as M1GLC  to reflect the historical relationship 
between the Gaelic populations in Scotland and 
Iceland.

The genomic data suggest that virtually all 
M1GLC infections in Iceland were caused by descendants 
of a single bacterial cell very recently introduced into 
Iceland from elsewhere, probably Scotland. However, 
because GAS can be carried asymptomatically and 
causes large numbers of pharyngitis cases, and 
because Iceland has a very robust tourism industry, it 
is not possible to prove the progenitor’s geographical 
source. The epidemiological data show that the 
introduction of the M1GLC  sublineage into Iceland 
resulted in rapid dissemination countrywide (data not 
shown) and an increase in iGAS infections, particularly 
among young children. We speculate that social 
distancing practices implemented during the COVID-
19 pandemic reduced exposure to GAS, resulting in 
a reduction in herd immunity that contributed to the 
2022 and 2023 surge in iGAS infections. Consistent 
with this idea, very few cases of iGAS disease occurred 
in Iceland during the COVID-19 pandemic, from 2020 
to early 2022, suggesting that exposure to GAS was 
less prevalent in Iceland before the surge in iGAS 
infections between late 2022 and early 2023. Also 
consistent is the disproportionate number of infections 
during the surge occurring in young children as they 
constitute the population with the least prior exposure 
and developed herd immunity, making them more 
susceptible to infection on exposure. Given that it is 
possible to rapidly sequence the genomes of thousands 
of bacterial isolates for an affordable cost and that 
Iceland has a small population, strain emergence and 
dissemination patterns can, with appropriate sampling 
strategies, be analysed in near real-time, analogous 
to work done on severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2).

Conclusion
Our study reveals a public health challenge posed 
by the emergence and international transmission 
of  Streptococcus pyogenes  M1 infections between 

Iceland and Scotland that affected young children 
disproportionately. Nearly all isolates were of the 
M1UK lineage, which has a high morbidity and mortality, 
and the derivative M1GLC sub-lineage, underscoring the 
need for effective surveillance and response strategies. 
Although our work and others’ demonstrates the public 
health value of WGS in identifying transmission events, 
the effectiveness of such efforts is limited, as iGAS 
infections are not notifiable in all European countries. 
In addition to the absence of co-ordinated European 
surveillance programmes capable of real-time data 
collection and analysis, this limits the capacity for 
comprehensive assessment and timely public health 
interventions. Addressing these gaps is crucial for man-
aging iGAS emergence and spread more effectively.
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Table
Group A streptococcus epidemiological surveillance cohorts, 2005–2023 (n = 2,009)

Country M1 isolates Collection period Bioproject(s)
England & Wales [1] 695 2009–2016 PRJEB12015 and PRJEB17673
Australia [2] 319 2005–2020 PRJNA872282
Belgium [13] 149 Jan 2020–May 2023 PRJNA10033449
Denmark [10] 317 Jan 2018–Feb 2023 PRJEB62579 and PRJEB62635
Germany [14] 17 Oct 2022–Apr 2023 PRJEB64404
New Zealand [11] 59 2018–2019 PRJNA985396
Portugal [9] 30 Sep 2022–May 2023 PRJEB65018
United States [12] 86 2019–2021 PRJNA395240
Australia [5] 42 2007–2021 PRJNA996294
Scotland (this study) 250 2014–2023 PRJNA1076228
Iceland (this study) 45 2022–2023 PRJNA1076228
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Figure 2
Phylogenetic relationships among contemporary group A streptococcus M1 isolates, 2005–2023 (n = 2,009)
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