2,136 research outputs found
Hierarchical Gaussian process mixtures for regression
As a result of their good performance in practice and their desirable analytical properties, Gaussian process regression models are becoming increasingly of interest in statistics, engineering and other fields. However, two major problems arise when the model is applied to a large data-set with repeated measurements. One stems from the systematic heterogeneity among the different replications, and the other is the requirement to invert a covariance matrix which is involved in the implementation of the model. The dimension of this matrix equals the sample size of the training data-set. In this paper, a Gaussian process mixture model for regression is proposed for dealing with the above two problems, and a hybrid Markov chain Monte Carlo (MCMC) algorithm is used for its implementation. Application to a real data-set is reported
The fading of two transient ultraluminous x-ray sources to below the stellar mass Eddington limit
We report new detections of the two transient ultraluminous X-ray sources (ULXs) in NGC 5128 from an ongoing series of Chandra observations. Both sources have previously been observed L (2-3) × ∼10 erg s, at the lower end of the ULX luminosity range. The new observations allow us to study these sources in the luminosity regime frequented by the Galactic black hole X-ray binaries (BH XBs). We present the recent lightcurves of both ULXs. 1RXH J132519.8-430312 (ULX1) was observed at L 1 × 10 erg s, while CXOU J132518.2-430304 (ULX2) declined to L 2 × 10 erg s and then lingered at this luminosity for hundreds of days. We show that a reasonable upper limit for both duty cycles is 0.2, with a lower limit of 0.12 for ULX2. This duty cycle is larger than anticipated for transient ULXs in old stellar populations. By fitting simple spectral models in an observation with ∼50 counts we recover properties consistent with Galactic BH XBs, but inconclusive as to the spectral state. We utilize quantile analyses to demonstrate that the spectra are generally soft, and that in one observation the spectrum of ULX2 is inconsistent with a canonical hard state at >95% confidence. This is contrary to what would be expected of an accreting intermediate mass black hole primary, which we would expect to be in the hard state at these luminosities. We discuss the paucity of transient ULXs discovered in early-type galaxies and excogitate explanations. We suggest that the number of transient ULXs scales with the giant and sub-giant populations, rather than the total number of XBs.Peer reviewe
Ecological model of extinctions
We present numerical results based on a simplified ecological system in
evolution, showing features of extinction similar to that claimed for the
biosystem on Earth. In the model each species consists of a population in
interaction with the others, that reproduces and evolves in time. Each species
is simultaneously a predator and a prey in a food chain. Mutations that change
the interactions are supposed to occur randomly at a low rate. Extinctions of
populations result naturally from the predator-prey dynamics. The model is not
pinned in a fitness variable, and natural selection arises from the dynamics.Comment: 16 pages (LaTeX type, RevTeX style), including 6 figures in gif
format. To be published in Phys. Rev. E (prob. Dic. 96
Generalized Kahler geometry and gerbes
We introduce and study the notion of a biholomorphic gerbe with connection.
The biholomorphic gerbe provides a natural geometrical framework for
generalized Kahler geometry in a manner analogous to the way a holomorphic line
bundle is related to Kahler geometry. The relation between the gerbe and the
generalized Kahler potential is discussed.Comment: 28 page
The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare
Solar flares occur due to the sudden release of energy stored in
active-region magnetic fields. To date, the pre-cursors to flaring are still
not fully understood, although there is evidence that flaring is related to
changes in the topology or complexity of an active region's magnetic field.
Here, the evolution of the magnetic field in active region NOAA 10953 was
examined using Hinode/SOT-SP data, over a period of 12 hours leading up to and
after a GOES B1.0 flare. A number of magnetic-field properties and low-order
aspects of magnetic-field topology were extracted from two flux regions that
exhibited increased Ca II H emission during the flare. Pre-flare increases in
vertical field strength, vertical current density, and inclination angle of ~
8degrees towards the vertical were observed in flux elements surrounding the
primary sunspot. The vertical field strength and current density subsequently
decreased in the post-flare state, with the inclination becoming more
horizontal by ~7degrees. This behaviour of the field vector may provide a
physical basis for future flare forecasting efforts.Comment: Accepted for Publication in Solar Physics. 16 pages, 4 figure
Type-Decomposition of a Pseudo-Effect Algebra
The theory of direct decomposition of a centrally orthocomplete effect
algebra into direct summands of various types utilizes the notion of a
type-determining (TD) set. A pseudo-effect algebra (PEA) is a (possibly)
noncommutative version of an effect algebra. In this article we develop the
basic theory of centrally orthocomplete PEAs, generalize the notion of a TD set
to PEAs, and show that TD sets induce decompositions of centrally orthocomplete
PEAs into direct summands.Comment: 18 page
Quantifying Entanglement Production of Quantum Operations
The problem of entanglement produced by an arbitrary operator is formulated
and a related measure of entanglement production is introduced. This measure of
entanglement production satisfies all properties natural for such a
characteristic. A particular case is the entanglement produced by a density
operator or a density matrix. The suggested measure is valid for operations
over pure states as well as over mixed states, for equilibrium as well as
nonequilibrium processes. Systems of arbitrary nature can be treated, described
either by field operators, spin operators, or any other kind of operators,
which is realized by constructing generalized density matrices. The interplay
between entanglement production and phase transitions in statistical systems is
analysed by the examples of Bose-Einstein condensation, superconducting
transition, and magnetic transitions. The relation between the measure of
entanglement production and order indices is analysed.Comment: 20 pages, Revte
Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming
In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
