305 research outputs found
Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation
Insects have a remarkable ability to identify and track odour sources in multi-odour backgrounds. Recent behavioural experiments show that this ability relies on detecting millisecond stimulus asynchronies between odourants that originate from different sources. Honeybees,
Apis mellifera , are able to distinguish mixtures where both odourants arrive at the same time (synchronous mixtures) from those where odourant onsets are staggered (asynchronous mixtures) down to an onset delay of only 6 ms. In this paper we explore this surprising ability in a model of the insects' primary olfactory brain area, the
antennal lobe. We hypothesize that a winner-take-all inhibitory network of local neurons in the antennal lobe has a symmetry-breaking effect, such that the response pattern in projection neurons to an asynchronous mixture is different from the response pattern to the corresponding synchronous mixture for an extended period of time beyond the initial odourant onset where the two mixture conditions actually differ. The prolonged difference between response patterns to synchronous and asynchronous mixtures could facilitate odour segregation in downstream circuits of the olfactory pathway. We present a detailed data-driven model of the bee antennal lobe that reproduces a large data set of experimentally observed physiological odour responses, successfully implements the hypothesised symmetry-breaking mechanism and so demonstrates that this mechanism is consistent with our current knowledge of the olfactory circuits in the bee brain
Airborne chemical sensing with mobile robots
Airborne chemical sensing with mobile robots has been an active research areasince the beginning of the 1990s. This article presents a review of research work in this field,including gas distribution mapping, trail guidance, and the different subtasks of gas sourcelocalisation. Due to the difficulty of modelling gas distribution in a real world environmentwith currently available simulation techniques, we focus largely on experimental work and donot consider publications that are purely based on simulations
Use of habitat odour by host-seeking insects
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect–host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of ‘habitat cues’, volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests
Trends in extreme weather events in Europe: implications for national and European Union adaptation strategies
This report, based on a comprehensive collection of scientific data from the last 20 years, provides a rallying call for Europe’s policy makers to come together to devise common strategies to help mitigate the physical, human and economic costs of the rising number of extreme weather events in Europe, such as extreme heat and cold, extremes of precipitation, storms, winds and surges, and drought. Highlights refer to the nature of the evidence for climate-driven changes in extreme weather in the past, the potential impact of further climate change in altering the pattern of these extremes, and possible adaptation strategies for dealing with extreme weather impacts.
It first provides information on extreme weather events and trends in recent decades as well as related impacts upon society. It is followed by an introduction to the scientific background on global warming and weather extremes, and the projections of future trends of meteorological extreme events that emerge from climate models under various scenarios of future greenhouse gas emissions. Finally, approaches to adaptation are introduced and recommendations provided. Readers wishing to obtain full source details for the figures, tables and references are recommended to consult the full report, which also includes more detailed analyses of the climatic conditions in various sub-regions of the EU
Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.
Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance
UFP-Integrating action for cleaner air and climate protection
The background information related to health effects and damage caused to ecosystems by PM atmospheric pollution, particularly by its fine fraction, will be summarisedCurrent international policy instruments for reducing airborne emissions and, consequently, improving air quality, will be reviewed. In particular the EU clean air package and the UN/ECE initiatives under the Long-Range Transboundary Air Pollution Convention (LRTAP), including the recentlyadopted Long-term Strategy, will be considered.
The air policy initiatives by EFCA related to improve air quality in relation to PM and its ultrafine fraction/Black Carbon will be described and assessed.
Combustion of all kinds produces PM pollution, including its ultrafine fraction (UFP). Carbonaceous particles in form of Black Carbon (BC) and Organic Aerosols (OA) are of particular concern. UFPs are also formed as secondary pollutants. The latter have substantial influence on particle formation and their growth generates half of the cloud condensation nuclei in the atmosphere. Non-CO2 Greenhouse Gases (NCGG), however, are underestimated as pollutants by the climate policy community and deserve to be treated as equally important. UFPs play an important role in policy to reduce toxic air pollution and climate forcers.
The series of UFP Symposia has provided strong evidence of impact, and information on sources and effective control techniques. EFCA therefore believes it is now timely to consider policy aspect. It fully supports UFP/BC regulation, including new ceilings in the EU NEC Directive and the revised Gothenburg Protocol under the LRTAP. Moreover, a new metric is urgently needed for UFPs, expressed in weight and by number of particles. Also, dual policy, integrating cleaner air and climate protection criteria, to combat UFPs can be more effective and generate co-benefits for both.
The role of integrated policy, as opposed to the current practice of separate sectoral policies in combatting air pollution will be considered with reference to concrete examples, including from the energy system
Seeing is believing: the nocturnal malarial mosquito Anopheles coluzzii responds to visual host-cues when odour indicates a host is nearby
Background: The immediate aim of our study was to analyse the behaviour of the malarial mosquito Anopheles coluzzii (An. gambiae species complex) near a human host with the ultimate aim of contributing to our fundamental understanding of mosquito host-seeking behaviour and the overall aim of identifying behaviours that could be exploited to enhance sampling and control strategies.
Results: Based on 3D video recordings of individual host-seeking females in a laboratory wind-tunnel, we found that despite being a nocturnal species, An. coluzzii is highly responsive to a visually conspicuous object, but only in the presence of host-odour. Female mosquitoes approached and abruptly veered away from a dark object, which suggests attraction to visual cues plays a role in bringing mosquitoes to the source of host odour. It is worth noting that the majority of our recorded flight tracks consisted of highly stereotyped ‘dipping’ sequences near the ground, which have been mentioned in the literature, but never before quantified.
Conclusions: Our quantitative analysis of female mosquito flight patterns within ~1.5 m of a host has revealed highly relevant information about responsiveness to visual objects and flight height that could revolutionise the efficacy of sampling traps; the capturing device of a trap should be visually conspicuous and positioned near the ground where the density of host-seeking mosquitoes would be greatest. These characteristics are not universally present in current traps for malarial mosquitoes. The characterisation of a new type of flight pattern that is prevalent in mosquitoes suggests that there is still much that is not fully understood about mosquito flight behaviour
- …
