33 research outputs found

    Meta-analysis of epigenome-wide association studies in newborns and children show widespread sex differences in blood DNA methylation

    Get PDF
    Publisher Copyright: © 2022 The AuthorsBackground: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. Methods: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5–10 years from 8 cohorts (n = 4268). Results: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10−7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10−6) in older children and had methylation differences in the same direction. Conclusions: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.Peer reviewe

    Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight

    Get PDF
    Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (P-Bonferroni <1.06 x 10(-7)). In additional analyses in 7,278 participants,Peer reviewe

    Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age

    Get PDF
    Background Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P <1.06 x 10(- 7), of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.Peer reviewe

    Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking.

    Get PDF
    Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring

    Genetics and epigenetics of childhood asthma

    No full text
    Asthma is a complex disorder caused by interaction of genetic and environmental factors. In the last decade a lot of genes related to asthma and atopy were discovered. Candidate gene studies showed the involvement of genes related to innate and specific immunity, and replicated examples of interaction of genes and the environment. New genes identified through positional cloning studies, such as ADAM33, revived the interest in the airway epithelium and mesenchyme as important structural cells in asthma. Most genome-wide association studies discovered genes related to asthma that functions at the interface of airway structural cells and inflammation, such as IL33, IL1RL1 and TSLP. Epigenetics refers to heritable changes in gene expression without changes in DNA sequence, and includes DNA methylation, histone modifications and microRNAs. Several environmental factors known to be relevant in asthma may influence epigenetic modifications, however, the specific role of epigenetics in asthma is not clear. The ultimate goal of research in (epi)genetics of asthma is to identify susceptible subjects, and to contribute to (preventative) interventions

    Alpha-nicotinic acetylcholine receptor and tobacco smoke exposure: Effects on bronchial hyperresponsiveness in children

    No full text
    Background: The CHRNA 3 and 5 genes on chromosome 15 encode the alpha subunits of the nicotinic acetylcholine receptor, mediating airway cholinergic activity. Polymorphisms are associated with cigarette smoking, chronic obstructive pulmonary disease, and lung cancer. Aims: To determine possible associations between CHRNA 3/5 SNP rs8034191 and asthma or lung function in children in one local and one replicate multinational population, and assess if tobacco smoke modified the associations. Materials and methods: The rs8034191 SNP genotyped in 551 children from the environment and childhood asthma (ECA) birth cohort study in Oslo, Norway, and in 516 families from six European centers [the Genetics of Asthma International Network (GAIN) study] was tested for genotypic or allelic associations to current or history of asthma, allergic sensitization (= one positive skin prick tests), bronchial hyperresponsiveness (BHR), and lung function (FEV1% of predicted and FEV1/FVC ratio over/ below the 5th percentile). Results: Although the TT and CT genotypes at SNP rs 8034191 were overall significantly associated with BHR (OR = 3.9, 95% CI 1.510.0, p = 0.005), stratified analyses according to exposure to maternal smoking in-utero or indoor smoking at 10 yrs of age showed significant association (OR = 4.4, 95% CI 1.512.6, p = 0.006 and OR 5.6, 95% CI 1.718.5, p = 0.004, respectively) only in the non-exposed and not in exposed children. The SNPBHR association was replicated in the non-tobacco-smoke-exposed subjects in one of the GAIN centers (BHR associated with the T allele (p = 0.034)), but not in the collated GAIN populations. Asthma, allergic sensitization, and lung function were not associated with the rs8034191 alleles. Conclusion: An interaction between tobacco smoke exposure and a CHRNA3/5 polymorphism was found for BHR in children, but CHRNA3/5 was not associated with asthma or lung function
    corecore