463 research outputs found
Recommended from our members
ELECTRONIC PROCESSES IN LIQUID XENON
Several basic errors appeared in an article recently published by Prunier et al. entitled, 'Some Properties of Xenon Liquid-Filled Nuclear Detectors'. The article describes an experiment to measure electronic phenomena in liquid xenon using single wire cylindrical chambers. The author here describes some errors made in their interpretation of their experimental observations
Cooper-Frye Formula and Non-extensive Coalescence at RHIC Energy
Transverse spectra are calculated for various types of hadrons stemming from
Au Au collisions at GeV. We utilize a quark recombination model
based on generalized Boltzmann-Gibbs thermodynamics for local hadron production
at various break-up scenarios.Comment: 4 pages, 1 figur
Characterization of the Muscles within the Beef Forequarter
Thirty - four muscles/muscle groups, each greater than .1 kg, were dissected from 16 forequarters to establish a data base of individual muscle yields, palatability profiles and chemical composition. Carcass data from the 16 steers revealed the following averages: carcass weight - 288.4 kg, yield grade - 3.2, and quality grade – low choice. Individual muscle yields, tenderness profiles and chemical analyses indicated that the muscles within the forequarter are extremely variable. However, several of the larger muscles within the forequarter possess tenderness profiles comparable to the longissimus dorsi, the major muscle within rib steaks. This study suggests that maximum utilization of the beef forequarter may best be achieved when individual muscles are fabricated and marketed according to their size and tenderness potential
Real-time nonequilibrium dynamics in hot QED plasmas: dynamical renormalization group approach
We study the real-time nonequilibrium dynamics in hot QED plasmas
implementing a dynamical renormalization group and using the hard thermal loop
(HTL) approximation. The focus is on the study of the relaxation of gauge and
fermionic mean fields and on the quantum kinetics of the photon and fermion
distribution functions. For semihard photons of momentum eT << k << T we find
to leading order in the HTL that the gauge mean field relaxes in time with a
power law as a result of infrared enhancement of the spectral density near the
Landau damping threshold. The dynamical renormalization group reveals the
emergence of detailed balance for microscopic time scales larger than 1/k while
the rates are still varying with time. The quantum kinetic equation for the
photon distribution function allows us to study photon production from a
thermalized quark-gluon plasma (QGP) by off-shell effects. We find that for a
QGP at temperature T ~ 200 MeV and of lifetime 10 < t < 50 fm/c the hard (k ~
T) photon production from off-shell bremsstrahlung (q -> q \gamma and \bar{q}
-> \bar{q}\gamma) at O(\alpha) grows logarithmically in time and is comparable
to that produced from on-shell Compton scattering and pair annihilation at
O(\alpha \alpha_s). Fermion mean fields relax as e^{-\alpha T t ln(\omega_P t)}
with \omega_P=eT/3 the plasma frequency, as a consequence of the emission and
absorption of soft magnetic photons. A quantum kinetic equation for hard
fermions is obtained directly in real time from a field theoretical approach
improved by the dynamical renormalization group. The collision kernel is
time-dependent and infrared finite.Comment: RevTeX, 46 pages, including 5 EPS figures, published versio
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Comparative Natural History of Visual Function From Patients With Biallelic Variants in BBS1 and BBS10.
The purpose of this study was to compare the natural history of visual function change in cohorts of patients affected with retinal degeneration due to biallelic variants in Bardet-Biedl syndrome genes: BBS1 and BBS10.
Patients were recruited from nine academic centers from six countries (Belgium, Canada, France, New Zealand, Switzerland, and the United States). Inclusion criteria were: (1) female or male patients with a clinical diagnosis of retinal dystrophy, (2) biallelic disease-causing variants in BBS1 or BBS10, and (3) measures of visual function for at least one visit. Retrospective data collected included genotypes, age, onset of symptoms, and best corrected visual acuity (VA). When possible, data on refractive error, fundus images and autofluorescence (FAF), optical coherence tomography (OCT), Goldmann kinetic perimetry (VF), electroretinography (ERG), and the systemic phenotype were collected.
Sixty-seven individuals had variants in BBS1 (n = 38; 20 female patients and 18 male patients); or BBS10 (n = 29; 14 female patients and 15 male patients). Missense variants were the most common type of variants for patients with BBS1, whereas frameshift variants were most common for BBS10. When ERGs were recordable, rod-cone dystrophy (RCD) was observed in 82% (23/28) of patients with BBS1 and 73% (8/11) of patients with BBS10; cone-rod dystrophy (CORD) was seen in 18% of patients with BBS1 only, and cone dystrophy (COD) was only seen in 3 patients with BBS10 (27%). ERGs were nondetectable earlier in patients with BBS10 than in patients with BBS1. Similarly, VA and VF declined more rapidly in patients with BBS10 compared to patients with BBS1.
Retinal degeneration appears earlier and is more severe in BBS10 cases as compared to those with BBS1 variants. The course of change of visual function appears to relate to genetic subtypes of BBS
HI in the Outskirts of Nearby Galaxies
The HI in disk galaxies frequently extends beyond the optical image, and can
trace the dark matter there. I briefly highlight the history of high spatial
resolution HI imaging, the contribution it made to the dark matter problem, and
the current tension between several dynamical methods to break the disk-halo
degeneracy. I then turn to the flaring problem, which could in principle probe
the shape of the dark halo. Instead, however, a lot of attention is now devoted
to understanding the role of gas accretion via galactic fountains. The current
cold dark matter theory has problems on galactic scales, such as
the core-cusp problem, which can be addressed with HI observations of dwarf
galaxies. For a similar range in rotation velocities, galaxies of type Sd have
thin disks, while those of type Im are much thicker. After a few comments on
modified Newtonian dynamics and on irregular galaxies, I close with statistics
on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
Effects of nanosuspension and inclusion complex techniques on the in vitro protease inhibitory activity of naproxen
This study investigated the effects of nanosuspension and inclusion complex techniques on in vitro trypsin inhibitory activity of naproxen—a member of the propionic acid derivatives, which are a group of antipyretic, analgesic, and non-steroidal anti-inflammatory drugs. Nanosuspension and inclusion complex techniques were used to increase the solubility and anti-inflammatory efficacy of naproxen. The evaporative precipitation into aqueous solution (EPAS) technique and the kneading methods were used to prepare the nanosuspension and inclusion complex of naproxen, respectively. We also used an in vitro protease inhibitory assay to investigate the anti-inflammatory effect of modified naproxen formulations. Physiochemical properties of modified naproxen formulations were analyzed using UV, IR spectra, and solubility studies. Beta-cyclodextrin inclusion complex of naproxen was found to have a lower percentage of antitryptic activity than a pure nanosuspension of naproxen did. In conclusion, nanosuspension of naproxen has a greater anti-inflammatory effect than the other two tested formulations. This is because the nanosuspension formulation reduces the particle size of naproxen. Based on these results, the antitryptic activity of naproxen nanosuspension was noteworthy; therefore, this formulation can be used for the management of inflammatory disorders
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
- …