102 research outputs found
Facies Analysis and Sedimentary Architecture of Hybrid Event Beds in Submarine Lobes: Insights from the Crocker Fan, NW Borneo, Malaysia
Hybrid event beds represent the combined effect of multiple geological processes, which result in complex depositional geometries and distinct facies distribution in marine environments. Previous work on hybrid event beds highlights the classification, origin, and types of hybrid facies. However, in the present study, we discuss the development of hybrid event beds in submarine lobes with an emphasis on the analysis of proximal to distal, frontal to lateral relationships and evolution during lobe progradation. Detailed geological fieldwork was carried out in the classical deep-marine Late Paleogene Crocker Fan to understand the relationship between the character of hybrid bed facies and lobe architecture. The results indicate that hybrid facies of massive or structureless sandstone with mud clasts, clean to muddy sand, and chaotic muddy sand with oversized sand patch alternations (H1–H3) are well developed in proximal to medial lobes, while distal lobes mainly contain parallel to cross-laminated clean to muddy hybrid facies (H3–H5). Furthermore, lateral lobes have less vertical thickness of hybrid beds than frontal lobes. The development of hybrid beds takes place in the lower part of the thickening upward sequence of lobe progradation, while lobe retrogradation contains hybrid facies intervals in the upper part of stratigraphy. Hence, the development of hybrid beds in submarine lobe systems has a significant impact on the characterization of heterogeneities in deep-marine petroleum reservoirs at sub-seismic levels
FAMILIAL CAMPTODACTYLY COXA VARA PERICARDITIS SYNDROME MASQUARADING AS JUVUNILE IDIOPATHIC ARTHRITIS
The camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP) is a rare autosomal recessive disease characterized by congenital or early-onset camptodactyly, childhood-onset non-inflammatory arthropathy associated with synovial hyperplasia, constrictive pericarditis and coxa vara. This rare disease is caused by mutations in PRG4 Gene which encodes for lubricin, a protein present in synovial fluid responsible for lubrication.
The case we are reporting is of 9 and half years old boy who presented to us in pediatric Out Patient Department with early onset camptodactyly and non-inflammatory arthropathy. Synovial biopsy shows synovial hyperplasia with numerous CD68 positive multinucleated giant cells. He was discharged and physiotherapy was advised with regular follow ups
A Robust Color Image Watermarking Scheme using Chaos for Copyright Protection
An exponential growth in multimedia applications has led to fast adoption of digital watermarking phenomena to protect the copyright information and authentication of digital contents. A novel spatial domain symmetric color image robust watermarking scheme based on chaos is presented in this research. The watermark is generated using chaotic logistic map and optimized to improve inherent properties and to achieve robustness. The embedding is performed at 3 LSBs (Least Significant Bits) of all the threecolor components of the host image. The sensitivity of the chaotic watermark along with redundant embedding approach makes the entire watermarking scheme highly robust, secure and imperceptible. In this paper, various image quality analysis metrics such as homogeneity, contrast, entropy, PSNR (Peak Signal to Noise Ratio), UIQI (Universal Image Quality Index) and SSIM (Structural Similarity Index Measures) are measures to analyze proposed scheme. The proposed technique shows superior results against UIQI. Further, the watermark image with proposed scheme is tested against various image-processing attacks. The robustness of watermarked image against attacks such as cropping, filtering, adding random noises and JPEG compression, rotation, blurring, darken etc. is analyzed. The Proposed scheme shows strong results that are justified in this paper. The proposed scheme is symmetric; therefore, reversible process at extraction entails successful extraction of embedded watermark
Soft computing paradigms to find the numerical solutions of a nonlinear influenza disease model
The aim of this work is to present the numerical results of the influenza disease nonlinear system using the feed forward artificial neural networks (ANNs) along with the optimization of the combination of global and local search schemes. The genetic algorithm (GA) and active-set method (ASM), i.e., GA-ASM, are implemented as global and local search schemes. The mathematical nonlinear influenza disease system is dependent of four classes, susceptible S(u), infected I(u), recovered R(u) and cross-immune individuals C(u). For the solutions of these classes based on influenza disease system, the design of an objective function is presented using these differential system equations and its corresponding initial conditions. The optimization of this objective function is using the hybrid computing combination of GA-ASM for solving all classes of the influenza disease nonlinear system. The obtained numerical results will be compared by the Adams numerical results to check the authenticity of the designed ANN-GA-ASM. In addition, the designed approach through statistical based operators shows the consistency and stability for solving the influenza disease nonlinear system
Porous and highly responsive polymeric fabricated nanometrices for solubility enhancement of acyclovir; characterization and toxicological evaluation
Solubility is one of the major factors which affects several therapeutic mioeties in terms of their therapeutic efficacy. In the current study, we presented a porous and amorphous nanometrices system for the enhancement of the solubility of acyclovir. The polymeric network was fabricated by crosslinking polyethylene glycol-6000, polycaprolactone, and β-cyclodextrin with methacrylic acid by optimizing free radical polymerization technique using methylene bisacrylamide as a crosslinking agent. The formulated nanometrices were then characterized by zetasizer, FTIR, PXRD, Scanning electron microscopy, Thermogravimetric analysis, swelling, sol-gel fraction, drug loading, stability, solubility, and in-vitro dissolution analysis. Since the formulated system has to be administered orally, therefore to determine the in-vivo biocompatibility, nanometrices were administered orally to experimental animals. SEM images provided a rough and porous structure while PXRD showed an amorphous diffractogram of the unloaded and loaded nanometrices. Moreover, the particle size of the optimum loaded formulation was 25 nm higher than unloaded nanometrices due to the repulsion of the loaded drug. A significant loading of the drug with enhanced solubility and dissolution profiles was observed for the poorly soluble drug. The dissolution profile was quite satisfactory as compared to the marketed brand of drug which depicted that the solubility of the drug has been enhanced. Toxicity study conducted on rabbits confirmed the biocompatibility of the nanometrices. The systematic method of preparation, enhanced solubility and high dissolution profile of the formulated nanometrices may be proved as a promising technique to enhance the solubility of poorly aqueous soluble therapeutic agents
Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016
BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016.
METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone.
FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an
Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2015: the Global Burden of Disease Study 2015
Global, regional, and national levels of maternal mortality, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015
Background In transitioning from the Millennium Development Goal to the Sustainable Development Goal era, it is imperative to comprehensively assess progress toward reducing maternal mortality to identify areas of success, remaining challenges, and frame policy discussions. We aimed to quantify maternal mortality throughout the world by underlying cause and age from 1990 to 2015. Methods We estimated maternal mortality at the global, regional, and national levels from 1990 to 2015 for ages 10–54 years by systematically compiling and processing all available data sources from 186 of 195 countries and territories, 11 of which were analysed at the subnational level. We quantified eight underlying causes of maternal death and four timing categories, improving estimation methods since GBD 2013 for adult all-cause mortality, HIV-related maternal mortality, and late maternal death. Secondary analyses then allowed systematic examination of drivers of trends, including the relation between maternal mortality and coverage of specific reproductive health-care services as well as assessment of observed versus expected maternal mortality as a function of Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Findings Only ten countries achieved MDG 5, but 122 of 195 countries have already met SDG 3.1. Geographical disparities widened between 1990 and 2015 and, in 2015, 24 countries still had a maternal mortality ratio greater than 400. The proportion of all maternal deaths occurring in the bottom two SDI quintiles, where haemorrhage is the dominant cause of maternal death, increased from roughly 68% in 1990 to more than 80% in 2015. The middle SDI quintile improved the most from 1990 to 2015, but also has the most complicated causal profile. Maternal mortality in the highest SDI quintile is mostly due to other direct maternal disorders, indirect maternal disorders, and abortion, ectopic pregnancy, and/or miscarriage. Historical patterns suggest achievement of SDG 3.1 will require 91% coverage of one antenatal care visit, 78% of four antenatal care visits, 81% of in-facility delivery, and 87% of skilled birth attendance. Interpretation Several challenges to improving reproductive health lie ahead in the SDG era. Countries should establish or renew systems for collection and timely dissemination of health data; expand coverage and improve quality of family planning services, including access to contraception and safe abortion to address high adolescent fertility; invest in improving health system capacity, including coverage of routine reproductive health care and of more advanced obstetric care—including EmOC; adapt health systems and data collection systems to monitor and reverse the increase in indirect, other direct, and late maternal deaths, especially in high SDI locations; and examine their own performance with respect to their SDI level, using that information to formulate strategies to improve performance and ensure optimum reproductive health of their population. Funding Bill & Melinda Gates Foundation
- …
