437 research outputs found

    Food and Agricultural Approaches to Reducing Malnutrition (FAARM): protocol for a cluster-randomised controlled trial to evaluate the impact of a Homestead Food Production programme on undernutrition in rural Bangladesh

    Get PDF
    IntroductionChronic undernutrition affects over 150 million children worldwide and has serious consequences. The causes are complex and include insufficient dietary diversity and poor hygiene practices. Systematic reviews of nutrition-sensitive agricultural interventions concluded that while these hold promise, there is insufficient evidence for their impact on child growth. The Food and Agricultural Approaches to Reducing Malnutrition (FAARM) project is a 1:1 cluster-randomised trial aiming to evaluate the impact of a Homestead Food Production (HFP) programme implemented by Helen Keller International on women’s and children’s undernutrition.Methods and analysisThe HFP intervention comprises training of women’s groups and asset distribution to support year-round home gardening, poultry rearing and improved nutrition and hygiene practices. Formal trainings are supplemented by behaviour change communication during household visits, and facilitated links between producer groups and market actors. The FAARM trial will examine if and how this complex intervention reduces undernutrition. In 2015, FAARM enrolled married women and their children (0–3 years) in 96 rural settlements of Habiganj district in Sylhet division, Bangladesh. Covariate-constrained randomisation was used to assign 48 settlements to receive a 3-year HFP intervention, with the other 48 acting as controls, targeting over 2700 women. To study impact pathways, a surveillance system collects data on all participants every 2 months. In late 2019, children 0–3 years of age (born during the intervention period) will be surveyed, thus capturing impact during the critical first 1000 days of life. Children’s length/height-for-age z-scores will be compared between intervention and control arms using mixed-effects linear regression. Secondary outcomes include women’s and children’s micronutrient status, dietary intake, dietary diversity and other indicators of child growth, development and morbidity.Ethics and disseminationEthical approval was received in Bangladesh and Germany. Results will be disseminated through peer-reviewed publications and presentations in Bangladesh and internationally.Trial registration numberNCT02505711; Pre-results.</jats:sec

    Assay optimisation and age-related baseline variation in biochemical markers in lesser black-backed gulls

    Get PDF
    Free-ranging animals are often used as bioindicators of both short- and long-term changes in ecosystem health, mainly to detect the presence and effects of contaminants. Birds, and gulls in particular, have been used as bioindicators over a broad range of marine and terrestrial ecosystems. In this study, we standardise the conditions for the use of a suite of biochemical markers in non-destructive matrices of Lesser Black-backed Gull (Larus fuscus) to facilitate future biomonitoring of marine and terrestrial contaminants. We characterized cholinesterase (ChE) in plasma and optimized assay conditions for ChE activity as a marker of neurotoxic damage. Moreover, we quantified variation in activity of ChE, lactate dehydrogenase (LDH), glutathione-S-transferase (GST) and catalase (CAT) as well as variation ranges of lipid peroxidation (LPO), in free-ranging adults and captive chicks. The main ChE form present in plasma of both adults and chicks was butyrylcholinesterase (BChE) followed by acetylcholinesterase (AChE), whose relative proportion in plasma tended to decrease with increased chick age. LPO levels and GST activity in blood cells (BCs) decreased significantly with increasing chick age, while BChE and LDH activity in plasma were not age-dependent. CAT in BCs tended to decline non-significantly in older chicks. Results of this study underscore the importance of standardising assay conditions and assessing intrinsic baseline variation in biochemical markers, before biochemical quantification. Data presented here provide a foundation for future use of BChE and LDH activity in plasma, as well as oxidative stress markers (LPO, CAT and GST) in BCs, to monitor environmental stress effects in Lesser Black-backed gulls

    CERN’s beam instrumentation R&D study for FCC-ee

    Get PDF
    The Future Circular Collider (FCC) R&D study was started in 2021 as a comprehensive feasibility analysis of CERN’s future accelerator project encompassing technical, administrative and financial aspects. As part of the study, Beam Instrumentation (BI) is a key technical infrastructure that will have to face unprecedented challenges. In the case of electron-positron FCC-ee, these are represented, among others, by the size of the accelerator, the amount of radiation produced along the ring and in machine-detector interaction region, the presence of the top-up booster and collider ring in the same tunnel. In this contribution we will present the current FCC-ee BI study and discuss its status and perspectives

    TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    Full text link
    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on the rapid neutron-capture process as well as for tests of mass models in the heavy-mass region. The laser spectroscopic measurements will yield model-independent information on nuclear ground-state properties such as nuclear moments and charge radii of neutron-rich nuclei of refractory elements far from stability. This publication describes the experimental setup as well as its present status.Comment: 20 pages, 17 figure

    Author response

    Get PDF
    The cohesin complex mediates DNA-DNA interactions both between (sister chromatid cohesion) and within chromosomes (DNA looping). It has been suggested that intra-chromosome loops are generated by extrusion of DNAs through the lumen of cohesin's ring. Scc2 (Nipbl) stimulates cohesin's ABC-like ATPase and is essential for loading cohesin onto chromosomes. However, it is possible that the stimulation of cohesin's ATPase by Scc2 also has a post-loading function, for example driving loop extrusion. Using fluorescence recovery after photobleaching (FRAP) and single- molecule tracking, we show that Scc2 binds dynamically to chromatin, principally through an association with cohesin. Scc2's movement within chromatin is consistent with a 'stop-and-go' or 'hopping' motion. We suggest that a low diffusion coefficient, a low stoichiometry relative to cohesin, and a high affinity for chromosomal cohesin enables Scc2 to move rapidly from one chromosomal cohesin complex to another, performing a function distinct from loading
    • …
    corecore