19 research outputs found
The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat
Ferredoxin NADP+ oxidoreductase (FNR) enzymes catalyse electron transfer between ferredoxin and NADPH. In plants, a photosynthetic FNR (pFNR) transfers electrons from reduced ferredoxin to NADPH for the final step of linear electron flow, providing reductant for carbon fixation. pFNR is also thought to play important roles in two different mechanisms of cyclic electron flow around photosystem I; and photosynthetic reductant is itself partitioned between competing linear, cyclic, and alternative electron flow pathways. Four pFNR protein isoforms in wheat that display distinct reaction kinetics with leaf-type ferredoxin have previously been identified. It has been suggested that these isoforms may be crucial to the regulation of reductant partition between carbon fixation and other metabolic pathways. Here the 12âcm primary wheat leaf has been used to show that the alternative N-terminal pFNRI and pFNRII protein isoforms have statistically significant differences in response to the physiological parameters of chloroplast maturity, nitrogen regime, and oxidative stress. More specifically, the results obtained suggest that the alternative N-terminal forms of pFNRI have distinct roles in the partitioning of photosynthetic reductant. The role of alternative N-terminal processing of pFNRI is also discussed in terms of its importance for thylakoid targeting. The results suggest that the four pFNR protein isoforms are each present in the chloroplast in phosphorylated and non-phosphorylated states. pFNR isoforms vary in putative phosphorylation responses to physiological parameters, but the physiological significance requires further investigation
Training future generations to deliver evidence-based conservation and ecosystem management
1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis. 2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice. 3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses. 4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.Peer reviewe
Training future generations to deliver evidence-based conservation and ecosystem management
Data availability statement: No data was used in this study.Peer review: The peer review history for this article is available at: https://publons.com/publon/10.1002/2688-8319.12032.Supporting Information: eso312032-sup-0001-SuppMat.docx (21.1 KB) available at: https://besjournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2F2688-8319.12032&file=eso312032-sup-0001-SuppMat.docx. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.Copyright © 2021 The Authors. 1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis.
2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice.
3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses.
4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.
Making informed conservation and ecosystem management choices is based upon a sound understanding of the relevant evidence. There is an increasing wealth of conservation science available, and access to this is becoming easier. But, are conservation practitioners being trained to utilize this information?
In conservation, decision-making is often based upon past experience or expert knowledge, as opposed to the full body of scientific literature (e.g., Pullin, Knight, Stone, & Charman, 2004; Rafidimanantsoa, Poudyal, Ramamonjisoa, & Jones, 2018). The failure to include scientific evidence in decision-making has the potential to reduce the effectiveness of management, or even lead to detrimental actions being undertaken (Walsh, Dicks, & Sutherland, 2015). Evidence-based conservation (EBC) seeks to avoid this by providing tools to facilitate and inform decision-making. To do this, scientific evidence is collated and critically appraised for its quality and relevance, and integrated with other knowledge, experience, values and costs (Sutherland, Pullin, Dolman, & Knight, 2004). Wider adoption of EBC requires conservation professionals to be trained in its principles and taught how to use it to inform conservation decision-making.MAVA Foundation; Arcadia Fund
(in press) Making Sense of CO2: Carbon in Context
Human-driven climate change resulting from carbon emissions threatens major environmental disturbance. However, the problems we face are the environmental costs of the changing climate, not the presence of CO2 molecules as such. This essay argues that present climate action strategies dangerously fail to appreciate the environmental, socioeconomic and climate context of carbon. Reducing action on climate to the management of carbon emissions, while favored by governments and businesses, threatens to create a myriad of wider environmental and social problems. This has been exacerbated by the subsequent transformation, made possible by this carbon reductionism, of carbon into a commodity. Consideration of context is effectively prevented, even if one tries to factor in environmental values, because tradable carbon credits depend on treating carbon in the abstract as a commodity. Contesting the decontextualization of carbon requires researchers to explain the importance of environmental context, to develop potential models for the transition to a âclimate cleanâ global economy, and to explore the political levers for such structural change. </jats:p
Interaction of the coccolithophore Gephyrocapsa oceanica with its carbon environment: response to a recreated high-CO2 geological past.
Coccolithophores have played a key role in the carbon cycle since becoming dominant in the Cretaceous ocean, and their influence depends fundamentally on how they interact with their external carbon environment. Because the photosynthetic carbon-fixing enzyme Rubisco requires high levels of CO(2) for effective catalysis, coccolithophores are known to induce carbon concentrating mechanisms (CCMs) to raise the level of dissolved inorganic carbon (DIC) in an 'internal pool'. The ocean carbon system has varied greatly over the geological past, suggesting that coccolithophore interactions with that external carbon environment will have changed in parallel. The widespread present-day coccolithophore Gephyrocapsa oceanica was acclimated here to a geological scale change in the seawater carbon system (five times higher DIC and alkalinity). Significant acclimation in response to the external carbon environment was demonstrated by a fourfold increase in the K(m) substrate concentration requirement for half-maximum photosynthetic carbon fixation rates (suggesting that CCMs were down-regulated when ambient carbon was more available). There was, however, no difference in growth rate, morphology or calcification, suggesting that calcification is not coupled to photosynthesis as one of the CCMs induced here and that productivity (growth rate and calcification) is not carbon-limited under representative present-day conditions. Beyond the kinetic parameters of photosynthesis, the only other indication of changed cell physiology seen was the increased fractionation of carbon isotopes into organic matter. These findings demonstrate that G. oceanica changes its carbon-use physiology to maintain consistent photosynthetic carbon fixation in concert with different levels of ambient DIC without changing its morphology or calcification