26 research outputs found

    A Machine Learning-Based Raman Spectroscopic Assay for the Identification of Burkholderia mallei and Related Species

    Get PDF
    Burkholderia (B.) mallei, the causative agent of glanders, and B. pseudomallei, the causative agent of melioidosis in humans and animals, are genetically closely related. The high infectious potential of both organisms, their serological cross-reactivity, and similar clinical symptoms in human and animals make the differentiation from each other and other Burkholderia species challenging. The increased resistance against many antibiotics implies the need for fast and robust identification methods. The use of Raman microspectroscopy in microbial diagnostic has the potential for rapid and reliable identification. Single bacterial cells are directly probed and a broad range of phenotypic information is recorded, which is subsequently analyzed by machine learning methods. Burkholderia were handled under biosafety level 1 (BSL 1) conditions after heat inactivation. The clusters of the spectral phenotypes and the diagnostic relevance of the Burkholderia spp. were considered for an advanced hierarchical machine learning approach. The strain panel for training involved 12 B. mallei, 13 B. pseudomallei and 11 other Burkholderia spp. type strains. The combination of top- and sub-level classifier identified the mallei-complex with high sensitivities (>95%). The reliable identification of unknown B. mallei and B. pseudomallei strains highlighted the robustness of the machine learning-based Raman spectroscopic assay

    Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers

    Get PDF
    Background The global incidence of foodborne infections and antibiotic resistance is recently increased and considered of public health concern. Currently, scarcely information is available on foodborne infections and ESBL associated with poultry and beef meat in Egypt. Methods In total, 180 chicken and beef meat samples as well as internal organs were collected from different districts in northern Egypt. The samples were investigated for the prevalence and antibiotic resistance of Salmonella enterica serovars and Escherichia coli. All isolates were investigated for harbouring class 1 and class 2 integrons. Results Out of 180 investigated samples 15 S. enterica (8.3%) and 21 E. coli (11.7%) were isolated and identified. S. enterica isolates were typed as 9 S. Typhimurium (60.0%), 3 S. Paratyphi A (20.0%), 2 S. Enteritidis (13.3%) and 1 S. Kentucky (6.7%). Twenty-one E. coli isolates were serotyped into O1, O18, O20, O78, O103, O119, O126, O145, O146 and O158. The phenotypic antibiotic resistance profiles of S. enterica serovars to ampicillin, cefotaxime, cefpodoxime, trimethoprim/sulphamethoxazole and tetracycline were 86.7, 80.0, 60.0, 53.3 and 40.0%, respectively. Isolated E. coli were resistant to tetracycline (80.9%), ampicillin (71.4%), streptomycin, trimethoprim/sulphamethoxazole (61.9% for each) and cefotaxime (33.3%). The dissemination of genes coding for ESBL and AmpC β-lactamase in S. enterica isolates included bla CTX-M (73.3%), bla TEM (73.3%) and bla CMY (13.3%). In E. coli isolates bla TEM, bla CTX-M and bla OXA were identified in 52.4, 42.9 and 14.3%, respectively. The plasmid-mediated quinolone resistance genes identified in S. enterica were qnrA (33.3%), qnrB (20.0%) and qnrS (6.7%) while qnrA and qnrB were detected in 33.3% of E. coli isolates. Class 1 integron was detected in 13.3% of S. enterica and in 14.3% of E. coli isolates. Class 2 integron as well as the colistin resistance gene mcr-1 was not found in any of E. coli or S. enterica isolates. Conclusions This study showed high prevalence of S. enterica and E. coli as foodborne pathogens in raw chicken and beef meat in Nile Delta, Egypt. The emergence of antimicrobial resistance in S. enterica and E. coli isolates is of public health concern in Egypt. Molecular biological investigation elucidated the presence of genes associated with antibiotic resistance as well as class 1 integron in S. enterica and E. coli

    Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt

    Get PDF
    Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt

    Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance

    Get PDF
    Coagulase-negative staphylococci (CoNS) are gaining much attention as causative agents of serious nosocomial infections in humans. This study aimed to determine the prevalence and phenotypic antimicrobial resistance of CoNS as well as the presence of resistance-associated genes in CoNS isolated from turkey farms in Egypt. Two hundred and fifty cloacal swabs were collected from apparently healthy turkeys in Egypt. Suspected isolates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The susceptibility testing of CoNS isolates against 20 antimicrobial agents was performed using the broth microdilution test. The presence of resistance-associated genes like mecA, vanA, blaZ, erm(A), erm(B), erm(C), aac-aphD, optrA, valS, and cfr was determined. Thirty-nine CoNS were identified. All isolates were phenotypically resistant to trimethoprim/sulfamethoxazole, penicillin, ampicillin, and tetracycline. The resistance rates to erythromycin, chloramphenicol, oxacillin, daptomycin, and tigecycline were 97.4%, 94.9%, 92.3%, 89.7%, and 87.2%, respectively. Thirty-one isolates were resistant to linezolid (79.5%). Low resistance rate was detected for both imipenem and vancomycin (12.8%). The erm(C) gene was identified in all erythromycin phenotypically resistant isolates, whereas two resistant isolates possessed three resistance-conferring genes erm(A), erm(B), and erm(C). The cfr and optrA genes were detected in 11 (35.5%) and 12 (38.7%) of the 31 linezolid-resistant isolates. The mecA, aac-aphD, and blaZ genes were identified in 22.2%, 41.9%, and 2.6% of phenotypically resistant isolates to oxacillin, gentamicin, and penicillin, respectively. This is the first study revealing the correlation between linezolid resistance and presence of cfr and optrA genes in CoNS isolates from Egypt, and it can help to improve knowledge about the linezolid resistance mechanism

    Ecological Distribution of Virulent Multidrug-Resistant Staphylococcus aureus in Livestock, Environment, and Dairy Products

    Get PDF
    Staphylococcus aureus is one of the most common causes of mastitis, leading to severe economic losses in the dairy industry. It is also zoonotic, with potential risks to public health. This study aimed to detect the occurrence of S. aureus-resistant strains isolated from cattle, buffalo, their environment, milk and dairy products; and to investigate the extent of animal, ecological, and food contamination by methicillin-resistant (MRSA) or enterotoxigenic S. aureus. Samples (n = 350) were collected from four animal (two cattle and two buffalo) farms, i.e., their environment. Thirty Karish cheese samples were collected from 10 markets in Mansoura, Egypt. S. aureus was detected in 17.9%, 17.6%, and 16.7% of samples collected from cattle, buffalo and Karish cheese, respectively. About 19% of isolated S. aureus strains carried the mecA gene. The distribution of the mecA gene was high in isolates from Karish cheese (60%), followed by samples collected from buffalo (16.2%) and cattle (16%). More than 34% of isolated S. aureus strains were enterotoxigenic, and the presence of enterotoxin genes was higher in isolates from Karish cheese (80%) than those from cattle (48%) and buffalo (18.9%). The most predominant enterotoxin gene among isolated S. aureus strains was the sea gene (26.9%), followed by sec (4.5%) and sed (3%) genes. Isolated strains were resistant to clindamycin (100%), kanamycin (97%), nalidixic acid (86.6%), cefotaxime (73.1%) sulphamethazole—trimethoprim (65.6%). Meanwhile, 95.5%, 94%, 86.6% and 77.7% of S. aureus strains were sensitive to ciprofloxacin, amikacin, imipenem and both cefoxitin and gentamycin, respectively. In conclusion, the presence of enterotoxigenic- and methicillin-resistant S. aureus strains in animals, their environment, and dairy products represents a public health concern, particularly in small-scale dairy farms in Egypt. To reduce the risk of infection of livestock and humans with resistant strains, strict regulations and guidelines for antimicrobial use in such a system are urgently required

    Seroprevalence and Molecular Identification of Brucella spp. in Camels in Egypt

    Get PDF
    Brucellosis is one of the most important worldwide zoonoses of many countries including Egypt. Camel brucellosis has not gained much attention in Egypt yet. This study is focused on the three governorates with the highest camel populations and the largest camel markets in the country to determine the disease seroprevalence and identify the Brucella species in local camel holdings. In total, 381 serum samples were collected from male and female camels from Giza, Aswan, and Al-Bahr Al-Ahmar (the Red Sea) governorates. Samples were serologically examined using the Rose–Bengal plate test (RBPT), indirect ELISA (i-ELISA), competitive ELISA (c-ELISA) and complement fixation test (CFT). Brucella antibodies were detected in 59 (15.5%), 87 (22.8%), 77 (20.2%) and 118 (31.0%) of sera by RBPT, i-ELISA, c-ELISA and CFT, respectively. Using real-time PCR, Brucella DNA was amplified in 32 (8.4%) seropositive samples including Brucella abortus (25/32), Brucella suis (5/32) and Brucella melitensis (2/32), defining a complex epidemiological status. To the best of our knowledge, this is the first study reporting Brucella suis DNA in camel serum. The risk-associated factors including age, sex, breed and geographical distribution were statistically analyzed, showing non-significant association with seroprevalence. The results of this study will raise awareness for camel brucellosis and help develop effective control strategies

    Occurrence, Phenotypic and Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Healthy Turkeys in Northern Egypt

    Get PDF
    Poultry is one of the most important reservoirs for zoonotic multidrug-resistant pathogens. The indiscriminate use of antimicrobials in poultry production is a leading factor for development and dissemination of antimicrobial resistance. This study aimed to describe the prevalence and antimicrobial resistance of E. coli isolated from healthy turkey flocks of different ages in Nile delta region, Egypt. In the current investigation, 250 cloacal swabs were collected from 12 turkey farms in five governorates in the northern Egypt. Collected samples were cultivated on BrillianceTM ESBL agar media supplemented with cefotaxime (100 mg/L). The E. coli isolates were identified using MALDI-TOF-MS and confirmed by a conventional PCR assay targeting 16S rRNA-DNA. The phenotypic antibiogram against 14 antimicrobial agents was determined using the broth micro-dilution method. DNA-microarray-based assay was applied for genotyping and determination of both, virulence and resistance-associated gene markers. Multiplex real-time PCR was additionally applied for all isolates for detection of the actual most relevant Carbapenemase genes. The phenotypic identification of colistin resistance was carried out using E-test. A total of 26 E. coli isolates were recovered from the cloacal samples. All isolates were defined as multidrug-resistant. Interestingly, two different E. coli strains were isolated from one sample. Both strains had different phenotypic and genotypic profiles. All isolates were phenotypically susceptible to imipenem, while resistant to penicillin, rifampicin, streptomycin, and erythromycin. None of the examined carbapenem resistance genes was detected among isolates. At least one beta-lactamase gene was identified in most of isolates, where blaTEM was the most commonly identified determinant (80.8%), in addition to blaCTX-M9 (23.1%), blaSHV (19.2%) and blaOXA-10 (15.4%). Genes associated with chloramphenicol resistance were floR (65.4%) and cmlA1 (46.2%). Tetracycline- and quinolone-resistance-associated genes tetA and qnrS were detected in (57.7%) and (50.0%) of isolates, respectively. The aminoglycoside resistance associated genes aadA1 (65.4%), aadA2 (53.8%), aphA (50.0%), strA (69.2%), and strB (65.4%), were detected among isolates. Macrolide resistance associated genes mph and mrx were also detected in (53.8%) and (34.6%). Moreover, colistin resistance associated gene mcr-9 was identified in one isolate (3.8%). The class 1 integron integrase intI1 (84.6%), transposase for the transposon tnpISEcp1 (34.6%) and OqxB -integral membrane and component of RND-type multidrug efflux pump oqxB (7.7%) were identified among the isolates. The existing high incidence of ESBL/colistin-producing E. coli identified in healthy turkeys is a major concern that demands prompt control; otherwise, such strains and their resistance determinants could be transmitted to other bacteria and, eventually, to people via the food chain

    Q fever in Egypt: Epidemiological survey of Coxiella burnetii specific antibodies in cattle, buffaloes, sheep, goats and camels

    Get PDF
    Q fever is a zoonotic disease caused by the bacterium Coxiella burnetii. Clinical presentation in humans varies from asymptomatic to flu-like illness and severe sequelae may be seen. Ruminants are often sub-clinically infected or show reproductive disorders such as abortions. In Egypt, only limited data on the epidemiology of Q fever in animals are available. Using a stratified two stage random sampling approach, we evaluated the prevalence of Coxiella burnetii specific antibodies among ruminants and camels in 299 herds. A total of 2,699 blood samples was investigated using enzyme-linked-immunosorbent assay (ELISA). Coxiella burnetii specific antibodies were detected in 40.7% of camels (215/528), 19.3% of cattle (162/840), 11.2% of buffaloes (34/304), 8.9% of sheep (64/716) and 6.8% of goats (21/311), respectively. Odds of seropositivity were significantly higher for cattle (aOR: 3.17;95% CI: 1.96-5.13) and camels (aOR: 9.75;95% CI: 6.02-15.78). Significant differences in seropositivity were also found between domains (Western Desert, Eastern Desert and Nile Valley and Delta) and 25 governorates (p 0.05). Only 8.7% of the interviewed people living on the farms consumed raw camel milk and none reported prior knowledge on Q fever. Findings from this nationwide study show that exposure to Coxiella burnetii is common in ruminants and camels. Disease awareness among physicians, veterinarians and animal owners has to be raised. Future epidemiological investigations have to elucidate the impact of Q fever on human health and on the economy of Egypt

    Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study

    Get PDF
    Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p<00001), age 70 years or older versus younger than 70 years (230 [165-322], p<00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p<00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore