259 research outputs found

    Integration of design, structural, thermal and optical analysis: And user's guide for structural-to-optical translator (PATCOD)

    Get PDF
    Electronic integration of design and analysis processes was achieved and refined at Langley Research Center (LaRC) during the development of an optical bench for a laser-based aerospace experiment. Mechanical design has been integrated with thermal, structural and optical analyses. Electronic import of the model geometry eliminates the repetitive steps of geometry input to develop each analysis model, leading to faster and more accurate analyses. Guidelines for integrated model development are given. This integrated analysis process has been built around software that was already in use by designers and analysis at LaRC. The process as currently implemented used Pro/Engineer for design, Pro/Manufacturing for fabrication, PATRAN for solid modeling, NASTRAN for structural analysis, SINDA-85 and P/Thermal for thermal analysis, and Code V for optical analysis. Currently, the only analysis model to be built manually is the Code V model; all others can be imported for the Pro/E geometry. The translator from PATRAN results to Code V optical analysis (PATCOD) was developed and tested at LaRC. Directions for use of the translator or other models are given

    Anatomy and origin of authochthonous late Pleistocene forced regression deposits, east Coromandel inner shelf, New Zealand: implications for the development and definition of the regressive systems tract

    Get PDF
    High-resolution seismic reflection data from the east Coromandel coast, New Zealand, provide details of the sequence stratigraphy beneath an autochthonous, wave dominated inner shelf margin during the late Quaternary (0-140 ka). Since c. 1 Ma, the shelf has experienced limited subsidence and fluvial sediment input, producing a depositional regime characterised by extensive reworking of coastal and shelf sediments during glacio-eustatic sea-level fluctuations. It appears that only one complete fifth-order (c. 100 000 yr) depositional sequence is preserved beneath the inner shelf, the late Pleistocene Waihi Sequence, suggesting any earlier Quaternary sequences were mainly cannibalised into successively younger sequences. The predominantly Holocene-age Whangamata Sequence is also evident in seismic data and modern coastal deposits, and represents an incomplete depositional sequence in its early stages of formation. A prominent aspect of the sequence stratigraphy off parts of the east Coromandel coast is the presence of forced regressive deposits (FRDs) within the regressive systems tract (RST) of the late Pleistocene Waihi Sequence. The FRDs are interpreted to represent regressive barrier-shoreface sands that were sourced from erosion and onshore reworking of underlying Pleistocene sediments during the period of slow falling sea level from isotope stages 5 to 2 (c. 112-18 ka). The RST is volumetrically the most significant depositional component of the Waihi Sequence; the regressive deposits form a 15-20 m thick, sharp-based, tabular seismic unit that downsteps and progrades continuously across the inner shelf. The sequence boundary for the Waihi Sequence is placed at the most prominent, regionally correlative, and chronostratigraphically significant surface, namely an erosional unconformity characterised in many areas by large incised valleys that was generated above the RST. This unconformity is interpreted as a surface of maximum subaerial erosion generated during the last glacial lowstand (c. 18 ka). Although the base of the RST is associated with a prominent regressive surface of erosion, this is not used as the sequence boundary as it is highly diachronous and difficult to identify and correlate where FRDs are not developed. The previous highstand deposits are limited to subaerial barrier deposits preserved behind several modern Holocene barriers along the coast, while the transgressive systems tract is preserved locally as incised-valley fill deposits beneath the regressive surface of erosion at the base of the RST. Many documented late Pleistocene RSTs have been actively sourced from fluvial systems feeding the shelf and building basinward-thickening, often stacked wedges of FRDs, for which the name allochthonous FRDs is suggested. The Waihi Sequence RST is unusual in that it appears to have been sourced predominantly from reworking of underlying shelf sediments, and thus represents an autochthonous FRD. Autochthonous FRDs are also present on the Forster-Tuncurry shelf in southeast Australia, and may be a common feature in other shelf settings with low subsidence and low sediment supply rates, provided shelf gradients are not too steep, and an underlying source of unconsolidated shelf sediments is available to source FRDs. The preservation potential of such autochthonous FRDs in ancient deposits is probably low given that they are likely to be cannibalised during subsequent sea-level falls

    Late-Holocene climatic variability south of the Alps as recorded by lake-level fluctuations at Lake Ledro, Trentino, Italy

    Get PDF
    International audienceA lake-level record for the late Holocene at Lake Ledro (Trentino, northeastern Italy) is presented. It is based on the sediment and pollen analysis of a 1.75 m high stratigraphic section observed on the southern shore (site Ledro I) and a 3.2 m long sediment core taken from a littoral mire on the southeastern shore (site Ledro II). The chronology is derived from 15 radiocarbon dates and pollen stratigraphy. The late-Holocene composite record established from these two sediment sequences gives evidence of centennial-scale fluctuations with highstands at c. 3400, 2600, 1700, 1200 and 400 cal. BP, in agreement with various palaeohydro-logical records established in central and northern Italy, as well as north of the Alps. In addition, high lake-level conditions at c. 2000 cal. BP may be the equivalent of stronger river discharge observed at the same time in Central Italy's rivers. In agreement with the lake-level record of Accesa (Tuscany), the Ledro record also suggests a relatively complex palaeohydrological pattern for the period around 4000 cal. BP. On a millennial scale, sediment hiatuses observed in the lower part of the Ledro I sediment sequence indicate that, except for a high-stand occurring just after 7500 cal. BP, lower lake levels generally prevailed rather before c. 4000 cal. BP than afterwards. Finally, the lake-level data obtained at Lake Ledro indicate that the relative continuity of settlements in humid areas of northern Italy during the Bronze Age (in contrast to their general abandonment north of the Alps between c. 3450 and 3150 cal. BP), does not reflect different regional patterns of climatic and palaeohy-drological conditions. In contrast, the rise in lake level dated to c. 3400 cal. BP at Ledro appears to coincide with a worldwide climate reversal, observed in both the hemispheres, while palaeoenvironmental and archaeological data collected at Lake Ledro may suggest, as a working hypothesis, a relative emancipation of proto-historic societies from climatic conditions

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    A century of sea level measurements at Newlyn, SW England

    Get PDF
    The Newlyn Tidal Observatory is the most important sea level station in the UK. It commenced operations in 1915 as part of the Second Geodetic Levelling of England and Wales, and the mean sea level determined from the tide gauge during the first six years (May 1915-April 1921) defined Ordnance Datum Newlyn (ODN) which became the national height datum for the whole of Great Britain. The 100 years of sea level data now available have contributed significantly to many studies in oceanography, geology and climate change. This paper marks the centenary of this important station by reviewing the sea level (and, more recently, detailed land level) measurements and Newlyn’s contributions to UK cartography, geodesy and sea-level science in general. Recommendations are made on how sea and land level measurements at Newlyn might be enhanced in the future

    Morphology of the Faial Island shelf (Azores): the interplay between volcanic, erosional, depositional, tectonic and mass-wasting processes

    Get PDF
    [1] The extents of volcanic island shelves result from surf erosion, which enlarges them, and volcanic progradation, which reduces them. However, mass‐wasting, tectonics and sediment deposition also contribute to their morphology. In order to assess the relative significance of these various processes, we have mapped in detail Faial Island's shelf in the Azores archipelago based on interpretation of geophysical and geological data. The nearshore substrates of the island, down to 30–50 m depth, are rocky and covered by volcaniclastic boulder deposits formed by surf action on now‐submerged lava flows. Below those depths, sandy and gravel volcaniclastic beds dominate, building clinoforms up to the shelf edge. In some sectors of the coast, prograding lava has narrowed the shelf, but, in contrast to nearby Pico Island, we find fewer submarine‐emplaced lavas on the shelf. In this island, we interpret the distance between the coastline and the shelf edge as almost entirely a result of a straightforward competition between surf erosion and lava progradation, in which erosion dominates. Therefore shelf width can be used as a proxy for coastline age as well as for wave energy exposure. The stratigraphy of shelf deposits in boomer seismic data is examined in detail to assess the roles of different sediment sources, accommodation space and wave exposure in creating these deposits. We also show evidence of mass‐wasting at the shelf edge and discuss the possible origins of slope instability. Finally, we discuss the contributing role of tectonics for the development of the shelf.publishe

    Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era

    Get PDF
    Present-day global mean sea level rise is caused by ocean thermal expansion, ice mass loss from glaciers and ice sheets, as well as changes in terrestrial water storage. For that reason, sea level is one of the best indicators of climate change as it integrates the response of several components of the climate system to internal and external forcing factors. Monitoring the global mean sea level allows detecting changes (e.g., in trend or acceleration) in one or more components. Besides, assessing closure of the sea level budget allows us to check whether observed sea level change is indeed explained by the sum of changes affecting each component. If not, this would reflect errors in some of the components or missing contributions not accounted for in the budget. Since the launch of TOPEX/Poseidon in 1992, a precise 27-year continuous record of sea level change is available. It has allowed major advances in our understanding of how the Earth is responding to climate change. The last two decades are also marked by the launch of the GRACE satellite gravity mission and the development of the Argo network of profiling floats. GRACE space gravimetry allows the monitoring of mass redistributions inside the Earth system, in particular land ice mass variations as well as changes in terrestrial water storage and in ocean mass, while Argo floats allow monitoring sea water thermal expansion due to the warming of the oceans. Together, satellite altimetry, space gravity, and Argo measurements provide unprecedented insight into the magnitude, spatial variability, and causes of present-day sea level change. With this observational network, we are now in a position to address many outstanding questions that are important to planning for future sea level rise. Here, we detail the network for observing sea level and its components, underscore the importance of these observations, and emphasize the need to maintain current systems, improve their sensors, and supplement the observational network where gaps in our knowledge remain

    Tide Gauge Benchmark Monitoring Working Group Technical Report 2022

    Get PDF
    editorial reviewedApplications of the Global Navigation Satellite Systems (GNSS) to Earth Sciences are numerous. The International GNSS Service (IGS), a voluntary federation of government agencies, universities and research institutions, combines GNSS resources and expertise to provide the highest–quality GNSS data, products, and services in order to support high–precision applications for GNSS–related research and engineering activities. This IGS Technical Report 2022 includes contributions from the IGS Governing Board, the Central Bureau, Analysis Centers, Data Centers, station and network operators, working groups, pilot projects, and others highlighting status and important activities, changes and results that took place and were achieved during 2022
    • 

    corecore