8 research outputs found

    Standardization of laboratory methods for the PERCH study

    Get PDF
    The Pneumonia Etiology Research for Child Health study was conducted across diverse research sites and relied on standardized clinical and laboratory methods for the accurate and meaningful interpretation of pneumonia etiology data. Blood, respiratory specimens, and urine were collected from children aged 1-5months hospitalized with severe or very severe pneumonia and community controls of the same age without severe pneumonia and were tested with an extensive array of laboratory diagnostic tests. A standardized testing algorithm and standard operating procedures were applied across all study sites. Site laboratories received uniform training, equipment, and reagents for core testing methods. Standardization was further assured by routine teleconferences, in-person meetings, site monitoring visits, and internal

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    No full text
    The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10-06/Pfemales: 3.45 × 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation

    The burden and trend of diseases and their risk factors in Australia, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    No full text
    Background: A comprehensive understanding of temporal trends in the disease burden in Australia is lacking, and these trends are required to inform health service planning and improve population health. We explored the burden and trends of diseases and their risk factors in Australia from 1990 to 2019 through a comprehensive analysis of the Global Burden of Disease Study (GBD) 2019. Methods: In this systematic analysis for GBD 2019, we estimated all-cause mortality using the standardised GBD methodology. Data sources included primarily vital registration systems with additional data from sample registrations, censuses, surveys, surveillance, registries, and verbal autopsies. A composite measure of health loss caused by fatal and non-fatal disease burden (disability-adjusted life-years [DALYs]) was calculated as the sum of years of life lost (YLLs) and years of life lived with disability (YLDs). Comparisons between Australia and 14 other high-income countries were made. Findings: Life expectancy at birth in Australia improved from 77·0 years (95% uncertainty interval [UI] 76·9–77·1) in 1990 to 82·9 years (82·7–83·1) in 2019. Between 1990 and 2019, the age-standardised death rate decreased from 637·7 deaths (95% UI 634·1–641·3) to 389·2 deaths (381·4–397·6) per 100 000 population. In 2019, non-communicable diseases remained the major cause of mortality in Australia, accounting for 90·9% (95% UI 90·4–91·9) of total deaths, followed by injuries (5·7%, 5·3–6·1) and communicable, maternal, neonatal, and nutritional diseases (3·3%, 2·9–3·7). Ischaemic heart disease, self-harm, tracheal, bronchus, and lung cancer, stroke, and colorectal cancer were the leading causes of YLLs. The leading causes of YLDs were low back pain, depressive disorders, other musculoskeletal diseases, falls, and anxiety disorders. The leading risk factors for DALYs were high BMI, smoking, high blood pressure, high fasting plasma glucose, and drug use. Between 1990 and 2019, all-cause DALYs decreased by 24·6% (95% UI 21·5–28·1). Relative to similar countries, Australia's ranking improved for age-standardised death rates and life expectancy at birth but not for YLDs and YLLs between 1990 and 2019. Interpretation: An important challenge for Australia is to address the health needs of people with non-communicable diseases. The health systems must be prepared to address the increasing demands of non-communicable diseases and ageing. Funding: Bill &amp; Melinda Gates Foundation.</p

    Genetic studies of body mass index yield new insights for obesity biology

    Get PDF
    Note: A full list of authors and affiliations appears at the end of the article. Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p

    Canada

    No full text
    corecore