257 research outputs found

    Projected effect of 2000-2050 changes in climate and emissions on aerosol levels in China and associated transboundary transport

    Get PDF
    We investigate projected 2000–2050 changes in concentrations of aerosols in China and the associated transboundary aerosol transport by using the chemical transport model GEOS-Chem driven by the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 at 4° × 5° resolution. Future changes in climate and emissions projected by the IPCC A1B scenario are imposed separately and together through sensitivity simulations. Accounting for sulfate, nitrate, ammonium, black carbon (BC), and organic carbon (OC) aerosols, concentrations of individual aerosol species change by −1.5 to +0.8 ÎŒg m^(−3), and PM_(2.5) levels are projected to change by about 10–20% in eastern China as a result of 2000–2050 change in climate alone. With future changes in anthropogenic emissions alone, concentrations of sulfate, BC, and OC are simulated to decrease because of assumed reductions in emissions, and those of nitrate are predicted to increase because of higher NO_x emissions combined with decreases in sulfate. The net result is a predicted reduction of seasonal mean PM_(2.5) concentrations in eastern China by 1–8 ÎŒg m^(−3) (or 10–40%) over 2000–2050. It is noted that current emission inventories for BC and OC over China are judged to be inadequate at present. Transboundary fluxes of different aerosol species show different sensitivities to future changes in climate and emissions. The annual outflow of PM_(2.5) from eastern China to the western Pacific is estimated to change by −7.0%, −0.7%, and −9.0% over 2000–2050 owing to climate change alone, changes in emissions alone, and changes in both climate and emissions, respectively. The fluxes of nitrate and ammonium aerosols from Europe and Central Asia into western China increase over 2000–2050 in response to projected changes in emissions, leading to a 10.5% increase in annual inflow of PM_(2.5) to western China with future changes in both emissions and climate. Fluxes of BC and OC from South Asia to China in spring contribute a large fraction of the annual inflow of PM_(2.5). The annual inflow of PM_(2.5) from South Asia and Southeast Asia to China is estimated to change by −8%, +281%, and +227% over 2000–2050 owing to climate change alone, changes in emissions alone, and changes in both climate and emissions, respectively. While the 4° × 5° spatial resolution is a limitation of the present study, the direction of predicted changes in aerosol levels and transboundary fluxes still provides valuable insight into future air quality

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change

    Global Health and Economic Impacts of Future Ozone Pollution

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We assess the human health and economic impacts of projected 2000-2050 changes in ozone pollution using the MIT Emissions Prediction and Policy Analysis-Health Effects (EPPA-HE) model, in combination with results from the GEOS-Chem global tropospheric chemistry model that simulated climate and chemistry effects of IPCC SRES emissions. We use EPPA to assess the human health damages (including acute mortality and morbidity outcomes) caused by ozone pollution and quantify their economic impacts in sixteen world regions. We compare the costs of ozone pollution under scenarios with 2000 and 2050 ozone precursor and greenhouse gas emissions (SRES A1B scenario). We estimate that health costs due to global ozone pollution above pre-industrial levels by 2050 will be 580billion(year2000580 billion (year 2000) and that acute mortalities will exceed 2 million. We find that previous methodologies underestimate costs of air pollution by more than a third because they do not take into account the long-term, compounding effects of health costs. The economic effects of emissions changes far exceed the influence of climate alone.United States Department of Energy, Office of Science (BER) grants DE-FG02-94ER61937 and DE-FG02-93ER61677, the United States Environmental Protection Agency grant EPA-XA-83344601-0, and the industrial and foundation sponsors of the MIT Joint Program on the Science and Policy of Global Change

    The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

    Get PDF
    We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere

    Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States

    Get PDF
    Global simulations of sulfate, nitrate, and ammonium aerosols are performed for the present day and 2050 using the chemical transport model GEOS-Chem. Changes in climate and emissions projected by the IPCC A1B scenario are imposed separately and together, with the primary focus of the work on future inorganic aerosol levels over the United States. Climate change alone is predicted to lead to decreases in levels of sulfate and ammonium in the southeast U.S. but increases in the Midwest and northeast U.S. Nitrate concentrations are projected to decrease across the U.S. as a result of climate change alone. In the U.S., climate change alone can cause changes in annually averaged sulfate-nitrate-ammonium of up to 0.61 ÎŒg/m^3, with seasonal changes often being much larger in magnitude. When changes in anthropogenic emissions are considered (with or without changes in climate), domestic sulfate concentrations are projected to decrease because of sulfur dioxide emission reductions, and nitrate concentrations are predicted to generally increase because of higher ammonia emissions combined with decreases in sulfate despite reductions in emissions of nitrogen oxides. The ammonium burden is projected to increase from 0.24 to 0.36 Tg, and the sulfate burden to increase from 0.28 to 0.40 Tg S as a result of globally higher ammonia and sulfate emissions in the future. The global nitrate burden is predicted to remain essentially constant at 0.35 Tg, with changes in both emissions and climate as a result of the competing effects of higher precursor emissions and increased temperature
    • 

    corecore