93 research outputs found
MODELLING TECHNICAL SYSTEMS IN THE EARLY PHASE: PROPOSING A FORMAL DEFINITION FOR THE SYSTEM CONCEPT
The task of developing “concepts” is common in all fields of engineering, especially in the early phases of product development. However, an in-depth literature analysis showed that authors - often depending on different contexts in design research, education, and industry - define the term “concept” in differing ways. The aspect of reference-based development is rarely addressed in existing definitions. This indicates that there is a need for an updated and concise concept definition. In this paper, the authors propose a new definition of the term “system concept” within the context of SGE - System Generation Engineering that incorporates the findings from the literature analysis. The definition was reflected on in two case-studies. The first one contained the system concept for automotive display and operating systems, the second one the system concept for a kinesthetic-haptic VR interface. The proposed definition contains the relevant characteristics identified from the literature review and supports both current activity-based process models and reference-based development, as practical application has shown
Force-matched embedded-atom method potential for niobium
Large-scale simulations of plastic deformation and phase transformations in
alloys require reliable classical interatomic potentials. We construct an
embedded-atom method potential for niobium as the first step in alloy potential
development. Optimization of the potential parameters to a well-converged set
of density-functional theory (DFT) forces, energies, and stresses produces a
reliable and transferable potential for molecular dynamics simulations. The
potential accurately describes properties related to the fitting data, and also
produces excellent results for quantities outside the fitting range. Structural
and elastic properties, defect energetics, and thermal behavior compare well
with DFT results and experimental data, e.g., DFT surface energies are
reproduced with less than 4% error, generalized stacking-fault energies differ
from DFT values by less than 15%, and the melting temperature is within 2% of
the experimental value.Comment: 17 pages, 13 figures, 7 table
Sub-Banded Reconstructed Phase Spaces for Speech Recognition
A novel method combining filter banks and reconstructed phase spaces is proposed for the modeling and classification of speech. Reconstructed phase spaces, which are based on dynamical systems theory, have advantages over spectral-based analysis methods in that they can capture nonlinear or higher-order statistics. Recent work has shown that the natural measure of a reconstructed phase space can be used for modeling and classification of phonemes. In this work, sub-banding of speech, which has been examined for recognition of noise-corrupted speech, is studied in combination with phase space reconstruction. This sub-banding, which is motivated by empirical psychoacoustical studies, is shown to dramatically improve the phoneme classification accuracy of reconstructed phase space-based approaches. Experiments that examine the performance of fused sub-banded reconstructed phase spaces for phoneme classification are presented. Comparisons against a cepstral-based classifier show that the proposed approach is competitive with state-of-the-art methods for modeling and classification of phonemes. Combination of cepstral-based features and the sub-band RPS features shows improvement over a cepstral-only baseline
Symptoms and Needs of Patients with Advanced Lung Cancer: Early Prevalence Assessment
Background: Little is known on symptom burden, psychosocial
needs, and perception of prognosis in advanced lung
cancer patients at the time of diagnosis, although early assessment
is strongly recommended within the setting of daily
routine care. Methods: Twelve study sites cross-sectionally
assessed symptoms and psychosocial needs of patients
suffering from newly diagnosed incurable lung cancer. Assessment
comprised NCCN distress thermometer, FACT-L,
SEIQoL-Q, PHQ-4, and shortened and modified SCNS-SF-34
questionnaires. Additional prognostic information from
both patients and physicians were collected. Results: A total
of 208 patients were evaluated. Mean age was 63.6 years,
58% were male, 84% suffered from stage IV lung cancer, and
71% had an ECOG performance status of 0–1. Mean distress
level was 5.4 (SD 2.5), FACT-L total score was 86 (21.5), and
TOI 50.5 (14.9). PHQ-4 was 4.6 (3.3), and shortened and modified
SCNS-SF-34 showed 9 (8.7) unmet needs per patient.
According to their physicians’ perspective, 98.1% of patients
were reflecting on and 85.2% were accepting incurability,
while 26.5% of patients considered the treatment to be of
curative intent. Conclusion: Our findings emphasize substantial
domains of symptom burden seen in newly diagnosed,
incurable lung cancer patients. Oncologists should
be aware of these features and address prognostic issues early in the disease trajectory to facilitate opportunities to
improve coping, advance care planning, and appropriate integration
of palliative care, thus improving quality of life
Assessing the predictive performance of population pharmacokinetic models for intravenous polymyxin B in critically ill patients
Polymyxin B (PMB) has reemerged as a last-line therapy for infections caused by multidrug-resistant gram-negative pathogens, but dosing is challenging because of its narrow therapeutic window and pharmacokinetic (PK) variability. Population PK (POPPK) models based on suitably powered clinical studies with appropriate sampling strategies that take variability into consideration can inform PMB dosing to maximize efficacy and minimize toxicity and resistance. Here we reviewed published PMB POPPK models and evaluated them using an external validation data set (EVD) of patients who are critically ill and enrolled in an ongoing clinical study to assess their utility. Seven published POPPK models were employed using the reported model equations, parameter values, covariate relationships, interpatient variability, parameter covariance, and unexplained residual variability in NONMEM (Version 7.4.3). The predictive ability of the models was assessed using prediction-based and simulation-based diagnostics. Patient characteristics and treatment information were comparable across studies and with the EVD (n = 40), but the sampling strategy was a main source of PK variability across studies. All models visually and statistically underpredicted EVD plasma concentrations, but the two-compartment models more accurately described the external data set. As current POPPK models were inadequately predictive of the EVD, creation of a new POPPK model based on an appropriately powered clinical study with an informed PK sampling strategy would be expected to improve characterization of PMB PK and identify covariates to explain interpatient variability. Such a model would support model-informed precision dosing frameworks, which are urgently needed to improve PMB treatment efficacy, limit resistance, and reduce toxicity in patients who are critically ill
Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family
Recommended from our members
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from ∼300 DU in 1850 to ∼ 305 DU in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone-depleting substances (ODSs). TCO is projected to return to 1960s values by the middle of the 21st century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be ∼ 10 DU higher than the 1960s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer-Dobson circulation under other Shared Socioeconomic Pathways (SSPs). In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by ∼ 0.5 ppmv at 70 hPa. CMIP6 multi-model mean stratospheric water vapour mixing ratios in the tropical lower stratosphere have increased by ∼ 0.5 ppmv from the pre-industrial to the present-day period and are projected to increase further by the end of the 21st century. The largest increases (∼ 2 ppmv) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapour, and to a lesser extent TCO, shows large variations following explosive volcanic eruptions. © Author(s) 2021
Novel Acid-Activated Fluorophores Reveal a Dynamic Wave of Protons in the Intestine of Caenorhabditis elegans
Unlike the digestive systems of vertebrate animals, the lumen of the alimentary canal of C. elegans is unsegmented and weakly acidic (pH ~ 4.4), with ultradian fluctuations to pH > 6 every 45 to 50 seconds. To probe the dynamics of this acidity, we synthesized novel acid-activated fluorophores termed Kansas Reds. These dicationic derivatives of rhodamine B become concentrated in the lumen of the intestine of living C. elegans and exhibit tunable pKa values (2.3–5.4), controlled by the extent of fluorination of an alkylamine substituent, that allow imaging of a range of acidic fluids in vivo. Fluorescence video microscopy of animals freely feeding on these fluorophores revealed that acidity in the C. elegans intestine is discontinuous; the posterior intestine contains a large acidic segment flanked by a smaller region of higher pH at the posterior-most end. Remarkably, during the defecation motor program, this hot spot of acidity rapidly moves from the posterior intestine to the anterior-most intestine where it becomes localized for up to 7 seconds every 45 to 50 seconds. Studies of pH-insensitive and base-activated fluorophores as well as mutant and transgenic animals revealed that this dynamic wave of acidity requires the proton exchanger PBO-4, does not involve substantial movement of fluid, and likely involves the sequential activation of proton transporters on the apical surface of intestinal cells. Lacking a specific organ that sequesters low pH, C. elegans compartmentalizes acidity by producing of a dynamic hot spot of protons that rhythmically migrates from the posterior to anterior intestine
Symptom Burden and Palliative Care Needs of Patients with Incurable Cancer at Diagnosis and During the Disease Course
Background Although current guidelines advocate early integration of palliative care, symptom burden and palliative care needs of patients at diagnosis of incurable cancer and along the disease trajectory are understudied. Material and Methods We assessed distress, symptom burden, quality of life, and supportive care needs in patients with newly diagnosed incurable cancer in a prospective longitudinal observational multicenter study. Patients were evaluated using validated self-report measures (National Comprehensive Cancer Network Distress Thermometer [DT], Functional Assessment of Cancer Therapy [FACT], Schedule for the Evaluation of Individual Quality of Life [SEIQoL-Q], Patients Health Questionnaire-4 [PHQ-4], modified Supportive Care Needs Survey [SCNS-SF-34]) at baseline (T0) and at 3 (T1), 6 (T2), and 12 months (T3) follow-up. Results From October 2014 to October 2016, 500 patients (219 women, 281 men; mean age 64.2 years) were recruited at 20 study sites in Germany following diagnosis of incurable metastatic, locally advanced, or recurrent lung (217), gastrointestinal (156), head and neck (55), gynecological (57), and skin (15) cancer. Patients reported significant distress (DT score >= 5) after diagnosis, which significantly decreased over time (T0: 67.2%, T1: 51.7%, T2: 47.9%, T3: 48.7%). The spectrum of reported symptoms was broad, with considerable variety between and within the cancer groups. Anxiety and depressiveness were most prevalent early in the disease course (T0: 30.8%, T1: 20.1%, T2: 14.7%, T3: 16.9%). The number of patients reporting unmet supportive care needs decreased over time (T0: 71.8 %, T1: 61.6%, T2: 58.1%, T3: 55.3%). Conclusion Our study confirms a variable and mostly high symptom burden at the time of diagnosis of incurable cancer, suggesting early screening by using standardized tools and underlining the usefulness of early palliative care. Implications for Practice A better understanding of symptom burden and palliative care needs of patients with newly diagnosed incurable cancer may guide clinical practice and help to improve the quality of palliative care services. The results of this study provide important information for establishing palliative care programs and related guidelines. Distress, symptom burden, and the need for support vary and are often high at the time of diagnosis. These findings underscore the need for implementation of symptom screening as well as early palliative care services, starting at the time of diagnosis of incurable cancer and tailored according to patients' needs
Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning
At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multi-national data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar was found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-negligible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.Peer reviewe
- …