196 research outputs found
RIG-I agonist SLR10 promotes macrophage M1 polarization during influenza virus infection
RationaleA family of short synthetic, triphosphorylated stem-loop RNAs (SLRs) have been designed to activate the retinoic-acid-inducible gene I (RIG-I) pathway and induce a potent interferon (IFN) response, which may have therapeutic potential. We investigated immune response modulation by SLR10. We addressed whether RIG-I pathway activation with SLR10 leads to protection of nonsmoking (NS) and cigarette smoke (CS)-exposed mice after influenza A virus (IAV) infection.MethodsMice were given 25 µg of SLR10 1 day before IAV infection. We compared the survival rates and host immune responses of NS and CS-exposed mice following challenge with IAV.ResultsSLR10 significantly decreased weight loss and increased survival rates in both NS and CS-exposed mice during IAV infection. SLR10 administration repaired the impaired proinflammatory response in CS-exposed mice without causing more lung injury in NS mice as assessed by physiologic measurements. Although histopathologic study revealed that SLR10 administration was likely to result in higher pathological scores than untreated groups in both NS and CS mice, this change was not enough to increase lung injury evaluated by lung-to-body weight ratio. Both qRT-PCR on lung tissues and multiplex immunoassay on bronchoalveolar lavage fluids (BALFs) showed that most IFNs and proinflammatory cytokines were expressed at lower levels in SLR10-treated NS mice than control-treaded NS mice at day 5 post infection (p.i.). Remarkably, proinflammatory cytokines IL-6, IL-12, and GM-CSF were increased in CS-exposed mice by SLR10 at day 5 p.i. Significantly, SLR10 elevated the ratio of the two chemokines (CXCL9 and CCL17) in BALFs, suggesting macrophages were polarized to classically activated (M1) status. In vitro testing also found that SLR10 not only stimulated human alveolar macrophage polarization to an M1 phenotype, but also reversed cigarette smoke extract (CSE)-induced M2 to M1 polarization.ConclusionsOur data show that SLR10 administration in mice is protective for both NS and CS-exposed IAV-infected mice. Mechanistically, SLR10 treatment promoted M1 macrophage polarization in the lung during influenza infection. The protective effects by SLR10 may be a promising intervention for therapy for infections with viruses, particularly those with CS-enhanced susceptibility to adverse outcomes
Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-α and NF-κb are key components of the innate immune response to the pathogen
<p>Abstract</p> <p>Background</p> <p><it>Bacillus anthracis</it>, the etiologic agent of anthrax, has recently been used as an agent of bioterrorism. The innate immune system initially appears to contain the pathogen at the site of entry. Because the human alveolar macrophage (HAM) plays a key role in lung innate immune responses, studying the HAM response to <it>B. anthracis </it>is important in understanding the pathogenesis of the pulmonary form of this disease.</p> <p>Methods</p> <p>In this paper, the transcriptional profile of <it>B. anthracis </it>spore-treated HAM was compared with that of mock-infected cells, and differentially expressed genes were identified by Affymetrix microarray analysis. A portion of the results were verified by Luminex protein analysis.</p> <p>Results</p> <p>The majority of genes modulated by spores were upregulated, and a lesser number were downregulated. The differentially expressed genes were subjected to Ingenuity Pathway analysis, the Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis, the Promoter Analysis and Interaction Network Toolset (PAINT) and Oncomine analysis. Among the upregulated genes, we identified a group of chemokine ligand, apoptosis, and, interestingly, keratin filament genes. Central hubs regulating the activated genes were TNF-α, NF-κB and their ligands/receptors. In addition to TNF-α, a broad range of cytokines was induced, and this was confirmed at the level of translation by Luminex multiplex protein analysis. PAINT analysis revealed that many of the genes affected by spores contain the binding site for c-Rel, a member of the NF-κB family of transcription factors. Other transcription regulatory elements contained in many of the upregulated genes were c-Myb, CP2, Barbie Box, E2F and CRE-BP1. However, many of the genes are poorly annotated, indicating that they represent novel functions. Four of the genes most highly regulated by spores have only previously been associated with head and neck and lung carcinomas.</p> <p>Conclusion</p> <p>The results demonstrate not only that TNF-α and NF-κb are key components of the innate immune response to the pathogen, but also that a large part of the mechanisms by which the alveolar macrophage responds to <it>B. anthracis </it>are still unknown as many of the genes involved are poorly annotated.</p
Protective essential oil attenuates influenza virus infection: An in vitro study in MDCK cells
<p>Abstract</p> <p>Background</p> <p>Influenza is a significant cause of morbidity and mortality. The recent pandemic of a novel H1N1 influenza virus has stressed the importance of the search for effective treatments for this disease. Essential oils from aromatic plants have been used for a wide variety of applications, such as personal hygiene, therapeutic massage and even medical practice. In this paper, we investigate the potential role of an essential oil in antiviral activity.</p> <p>Methods</p> <p>We studied a commercial essential oil blend, On Guard™, and evaluated its ability in modulating influenza virus, A/PR8/34 (PR8), infection in Madin-Darby canine kidney (MDCK) cells. Influenza virus was first incubated with the essential oil and infectivity in MDCK cells was quantified by fluorescent focus assay (FFA). In order to determine the mechanism of effects of essential oil in viral infection inhibition, we measured hemagglutination (HA) activity, binding and internalization of untreated and oil-treated virus in MDCK cells by flow cytometry and immunofluorescence microscopy. In addition, the effect of oil treatment on viral transcription and translation were assayed by relative end-point RT-PCR and western blot analysis.</p> <p>Results</p> <p>Influenza virus infectivity was suppressed by essential oil treatment in a dose-dependent manner; the number of nascent viral particles released from MDCK cells was reduced by 90% and by 40% when virus was treated with 1:4,000 and 1:6,000 dilutions of the oil, respectively. Oil treatment of the virus also decreased direct infection of the cells as the number of infected MDCK cells decreased by 90% and 45% when virus was treated with 1:2,000 and 1:3,000 dilutions of the oil, respectively. This was not due to a decrease in HA activity, as HA was preserved despite oil treatment. In addition, oil treatment did not affect virus binding or internalization in MDCK cells. These effects did not appear to be due to cytotoxicity of the oil as MDCK cell viability was only seen with concentrations of oil that were 2 to 6 times greater than the doses that inhibited viral infectivity. RT-PCR and western blotting demonstrated that oil treatment of the virus inhibited viral NP and NS1 protein, but not mRNA expression.</p> <p>Conclusions</p> <p>An essential oil blend significantly attenuates influenza virus PR8 infectivity <it>in vitro </it>without affecting viral binding or cellular internalization in MDCK cells. Oil treated virus continued to express viral mRNAs but had minimal expression of viral proteins, suggesting that the antiviral effect may be due to inhibition of viral protein translation.</p
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Bacillus anthracis Peptidoglycan Stimulates an Inflammatory Response in Monocytes through the p38 Mitogen-Activated Protein Kinase Pathway
We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis
Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management
The mucopolysaccharidoses (MPSs) are inherited lysosomal storage disorders caused by the absence of functional enzymes that contribute to the degradation of glycosaminoglycans (GAGs). The progressive systemic deposition of GAGs results in multi-organ system dysfunction that varies with the particular GAG deposited and the specific enzyme mutation(s) present. Cardiac involvement has been reported in all MPS syndromes and is a common and early feature, particularly for those with MPS I, II, and VI. Cardiac valve thickening, dysfunction (more severe for left-sided than for right-sided valves), and hypertrophy are commonly present; conduction abnormalities, coronary artery and other vascular involvement may also occur. Cardiac disease emerges silently and contributes significantly to early mortality
A communal catalogue reveals Earth’s multiscale microbial diversity
Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
A communal catalogue reveals Earth's multiscale microbial diversity
Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
Parameters for the mathematical modelling of Clostridium difficile acquisition and transmission: a systematic review
INTRODUCTION: Mathematical modelling of Clostridium difficile infection dynamics could contribute to the optimisation of strategies for its prevention and control. The objective of this systematic review was to summarise the available literature specifically identifying the quantitative parameters required for a compartmental mathematical model of Clostridium difficile transmission. METHODS: Six electronic healthcare databases were searched and all screening, data extraction and study quality assessments were undertaken in duplicate. Results were synthesised using a narrative approach. RESULTS: Fifty-four studies met the inclusion criteria. Reproduction numbers for hospital based epidemics were described in two studies with a range from 0.55 to 7. Two studies provided consistent data on incubation periods. For 62% of cases, symptoms occurred in less than 4 weeks (3-28 days) after infection. Evidence on contact patterns was identified in four studies but with limited data reported for populating a mathematical model. Two studies, including one without clinically apparent donor-recipient pairs, provided information on serial intervals for household or ward contacts, showing transmission intervals of <1 week in ward based contacts compared to up to 2 months for household contacts. Eight studies reported recovery rates of between 75%-100% for patients who had been treated with either metronidazole or vancomycin. Forty-nine studies gave recurrence rates of between 3% and 49% but were limited by varying definitions of recurrence. No study was found which specifically reported force of infection or net reproduction numbers. CONCLUSIONS: There is currently scant literature overtly citing estimates of the parameters required to inform the quantitative modelling of Clostridium difficile transmission. Further high quality studies to investigate transmission parameters are required, including through review of published epidemiological studies where these quantitative estimates may not have been explicitly estimated, but that nonetheless contain the relevant data to allow their calculation
- …