3,163 research outputs found

    Autonomous Control of Space Nuclear Reactors

    Get PDF
    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints

    Calibration and Testing of the Deformable Mirror Demonstration Mission (DeMi) CubeSat Payload

    Get PDF
    The Deformable Mirror Demonstration Mission (DeMi) is a 6U CubeSat that will operate and characterize the on-orbit performance of a Microelectromechanical Systems (MEMS) deformable mirror (DM) with both an image plane and a Shack-Hartmann wavefront sensor (SHWFS). Coronagraphs on future space telescopes will require precise wavefront control to detect and characterize Earth-like exoplanets. High-actuator count MEMS deformable mirrors can provide wavefront control with low size, weight, and power. The DeMi payload will characterize the on-orbit performance of a 140 actuator MEMS DM with 5.5 _m maximum stroke, with a goal of measuring individual actuator wavefront displacement contributions to a precision of 12 nm. The payload will be able to measure low order aberrations to l/10 accuracy and l/50 precision, and will correct static and dynamic wavefront phase errors to less than 100 nm RMS. The DeMi team developed miniaturized DM driver boards to fit within the CubeSat form factor, and two cross-strapped Raspberry Pi 3 boards are used as payload computers. We present an overview of the payload design, the assembly, integration and test progress, and the miniaturized DM driver characterization process. Launch is planned for late 2019

    Dual soluble epoxide hydrolase inhibitor – farnesoid X receptor agonist interventional treatment attenuates renal inflammation and fibrosis

    Get PDF
    IntroductionRenal fibrosis associated with inflammation is a critical pathophysiological event in chronic kidney disease (CKD). We have developed DM509 which acts concurrently as a farnesoid X receptor agonist and a soluble epoxide hydrolase inhibitor and investigated DM509 efficacy as an interventional treatment using the unilateral ureteral obstruction (UUO) mouse model.MethodsMale mice went through either UUO or sham surgery. Interventional DM509 treatment (10mg/kg/d) was started three days after UUO induction and continued for 7 days. Plasma and kidney tissue were collected at the end of the experimental protocol.ResultsUUO mice demonstrated marked renal fibrosis with higher kidney hydroxyproline content and collagen positive area. Interventional DM509 treatment reduced hydroxyproline content by 41% and collagen positive area by 65%. Renal inflammation was evident in UUO mice with elevated MCP-1, CD45-positive immune cell positive infiltration, and profibrotic inflammatory gene expression. DM509 treatment reduced renal inflammation in UUO mice. Renal fibrosis in UUO was associated with epithelial-to-mesenchymal transition (EMT) and DM509 treatment reduced EMT. UUO mice also had tubular epithelial barrier injury with increased renal KIM-1, NGAL expression. DM509 reduced tubular injury markers by 25-50% and maintained tubular epithelial integrity in UUO mice. Vascular inflammation was evident in UUO mice with 9 to 20-fold higher ICAM and VCAM gene expression which was reduced by 40-50% with DM509 treatment. Peritubular vascular density was reduced by 35% in UUO mice and DM509 prevented vascular loss.DiscussionInterventional treatment with DM509 reduced renal fibrosis and inflammation in UUO mice demonstrating that DM509 is a promising drug that combats renal epithelial and vascular pathological events associated with progression of CKD

    Thermomechanical design and testing of the Deformable Mirror Demonstration Mission (DeMi) CubeSat

    Get PDF
    The Deformable Mirror Demonstration Mission (DeMi) is a 6U CubeSat that will operate and characterize the on-orbit performance of a Microelectromechanical Systems (MEMS) deformable mirror (DM) with both an image plane and a Shack-Hartmann wavefront sensor (SHWFS). Coronagraphs on future space telescopes will require precise wavefront control to detect and characterize Earth-like exoplanets. High-actuator count MEMS deformable mirrors can provide wavefront control with low size, weight, and power. The DeMi payload will characterize the on-orbit performance of a 140 actuator MEMS DM with 5.5 Όm maximum stroke, with a goal of measuring individual actuator wavefront displacement contributions to a precision of 12 nm. The payload is designed to measure low order aberrations to λ/10 accuracy and λ/50 precision, and correct static and dynamic wavefront phase errors to less than 100 nm RMS. The thermal stability of the payload is key to maintaining the errors below that threshold. To decrease mismatches between coefficients of thermal expansion, the payload structure is made out of a single material, aluminum 7075. The gap between the structural components of the payload was filled with a thermal gap filler to increase the temperature homogeneity of the payload. The fixture that holds the payload into the bus is a set of three titanium flexures, which decrease the thermal conductivity between the bus and the payload while providing flexibility for the payload to expand without being deformed. The mounts for the optical components are attached to the main optical bench through kinematic coupling to allow precision assembly and location repeatability. The MEMS DM is controlled by miniaturized high-voltage driver electronics. Two cross-strapped Raspberry Pi 3 payload computers interface with the DM drive electronics. Each Raspberry Pi is paired to read out one of the wavefront sensor cameras. The DeMi payload is ~4.5U in volume, 2.5 kg in mass, and is flying on a 6U spacecraft built by Blue Canyon Technologies. The satellite launch was on February15,2020 onboard a Northrop Grumman Antares rocket, lifting off from the NASA Wallops Flight Facility. We present the mechanical design of the payload, the thermal considerations and decisions taken into the design, the manufacturing process of the flight hardware, and the environmental testing results

    ĐœĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČĐ°ĐœĐžĐ” Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžŃ струĐșтуры ĐŒĐ”Ń‚Đ°Đ»Đ»ĐŸĐŒĐ°Ń‚Ń€ĐžŃ‡ĐœŃ‹Ń… ĐșĐŸĐŒĐżĐŸĐ·ĐžŃ‚ĐŸĐČ ĐČ ĐżŃ€ĐŸŃ†Đ”ŃŃĐ” ŃĐžĐœŃ‚Đ”Đ·Đ° с ĐŸŃ†Đ”ĐœĐșĐŸĐč ŃŃ„Ń„Đ”ĐșтоĐČĐœŃ‹Ń… сĐČĐŸĐčстĐČ

    Get PDF
    Đ Đ°Đ±ĐŸŃ‚Đ° ĐżĐŸŃĐČŃŃ‰Đ”ĐœĐ° ĐŒĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČĐ°ĐœĐžŃŽ ĐżŃ€ĐŸŃ†Đ”ŃŃĐ° ĐșрОсталлОзацОО ĐșĐŸĐŒĐżĐŸĐ·ĐžŃ‚Đ° с ĐŒĐ”Ń‚Đ°Đ»Đ»ĐžŃ‡Đ”ŃĐșĐŸĐč ĐŒĐ°Ń‚Ń€ĐžŃ†Đ”Đč Đž тĐČĐ”Ń€ĐŽŃ‹ĐŒĐž ĐČĐșĐ»ŃŽŃ‡Đ”ĐœĐžŃĐŒĐž с ŃƒŃ‡Đ”Ń‚ĐŸĐŒ ŃƒŃĐ»ĐŸĐČĐžĐč ŃĐžĐœŃ‚Đ”Đ·Đ° (ĐŽĐ°ĐČĐ»Đ”ĐœĐžĐ”, сĐșĐŸŃ€ĐŸŃŃ‚ŃŒ ĐŸŃ…Đ»Đ°Đ¶ĐŽĐ”ĐœĐžŃ), ĐŒĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČĐ°ĐœĐžŃŽ ĐżŃ€ĐŸŃ†Đ”ŃŃĐ° Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐżĐ”Ń€Đ”Ń…ĐŸĐŽĐœĐŸĐč Đ·ĐŸĐœŃ‹ ĐŒĐ”Đ¶ĐŽŃƒ Ń‡Đ°ŃŃ‚ĐžŃ†Đ°ĐŒĐž Đž ĐŒĐ°Ń‚Ń€ĐžŃ†Đ”Đč Đž Ń€Đ°ŃŃ‡Đ”Ń‚Ńƒ ŃŃ„Ń„Đ”ĐșтоĐČĐœŃ‹Ń… сĐČĐŸĐčстĐČ ĐżĐŸĐ»ŃƒŃ‡Đ°Đ”ĐŒŃ‹Ń… ĐșĐŸĐŒĐżĐŸĐ·ĐžŃ‚ĐŸĐČ.The work is devoted to modeling the crystallization process of metal matrix composite with solid inclusions, taking into account the synthesis conditions (pressure, cooling rate), to modeling the formation of the transition zone between particles and matrix, and calculating the effective properties of the resulting composites

    Differential branching fraction and angular analysis of the decay B0→K∗0ÎŒ+Ό−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 ÎŒ + ÎŒ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− ÎŒ + ΜΌ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Observation of two new Ξb−\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π−\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξbâ€Č−\Xi_b^{\prime -} and Ξb∗−\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξbâ€Č−)−m(Ξb0)−m(π−)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb∗−)−m(Ξb0)−m(π−)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb∗−)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξbâ€Č−)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure
    • 

    corecore