153 research outputs found
The value of kinetic glomerular filtration rate estimation on medication dosing in acute kidney injury.
BackgroundIn acute kidney injury (AKI), medication dosing based on Cockcroft-Gault creatinine clearance (CrCl) or Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) estimated glomerular filtration rates (eGFR) are not valid when serum creatinine (SCr) is not in steady state. The aim of this study was to determine the impact of a kinetic estimating equation that incorporates fluctuations in SCrs on drug dosing in critically ill patients.MethodsWe used data from participants enrolled in the NIH Acute Respiratory Distress Syndrome Network Fluid and Catheters Treatment Trial to simulate drug dosing category changes with the application of the kinetic estimating equation developed by Chen. We evaluated whether kinetic estimation of renal function would change medication dosing categories (≥60, 30-59, 15-29, and <15mL/min) compared with the use of CrCl or CKD-EPI eGFR.ResultsThe use of kinetic CrCl and CKD-EPI eGFR resulted in a large enough change in estimated renal function to require medication dosing recategorization in 19.3% [95 CI 16.8%-21.9%] and 23.4% [95% CI 20.7%-26.1%] of participants, respectively. As expected, recategorization occurred more frequently in those with AKI. When we examined individual days for those with AKI, dosing discordance was observed in 8.5% of total days using the CG CrCl and 10.2% of total days using the CKD-EPI equation compared with the kinetic counterparts.ConclusionIn a critically ill population, use of kinetic estimates of renal function impacted medication dosing in a substantial proportion of AKI participants. Use of kinetic estimates in clinical practice should lower the incidence of medication toxicity as well as avoid subtherapeutic dosing during renal recovery
Recommended from our members
The Danish-American Research Exchange (DARE):a cross-sectional study of a binational research education program
BackgroundMost medical educational programs emphasize clinical observation or clinical skill acquisition, fewer focus upon research. The Danish-American Research Exchange (DARE) program, sponsored by the Lundbeck Foundation, is unique in that the medical student initiates biomedical research collaboration between Danish and US medical institutions. To achieve this, Danish medical students (DARE students) conduct binational mentored research projects while based in the United States for 10 months. In addition, DARE students are introduced to interdisciplinary thinking about how to develop ultra-low-cost healthcare interventions through the '$10 Challenge'.MethodsWe conducted a cross-sectional study of DARE alumni over five consecutive years (2015-2020, n = 24). Research metrics included completion of a research project, primary authorship, and co-authorship of publications. The number of publications, prior to and after the DARE program were enumerated. For the first four cohorts, graduation from medical school and acceptance or intention to enter a joint MD-PhD program also were assessed. Two focus groups were conducted using constructivist grounded theory. Discussions were transcribed, redacted, and coded using Dedoose software.ResultsDARE Medical students were 31.2 years (range 24-35), the majority were women (67%;16/24). The majority (17/24;71%) completed a first author publication in a peer-reviewed journal with a median of 3.9 per DARE alumnus. DARE alumnus reported increased proficiency in biostatistics, epidemiology, coding and public speaking as well as stronger research qualities in creativity, critical thinking, comfort in approaching scientist in both the US and Denmark (p < 0.001 for all). Qualitative key themes included: increased confidence, a deepening of research inquiry and linkage to a research network.ConclusionsPreliminarily, this study suggests that medical students can initiate binational collaboration in medicine. Benefits include research productivity, intention to pursue academic medical careers, as well as positive impacts on motivation. This medical student-initiated research model lays the groundwork for using this model across other country pairs to promote binational collaboration
iSupport : a WHO global online intervention for informal caregivers of people with dementia
In 2015, it was estimated that worldwide 47 million people had dementia, increasing to 75 million in 2030 and 132 million by 2050. Nearly 9.9 million people are expected to develop dementia each year, which translates to one new case every three seconds. While dementia occurs across all levels of socioeconomic status, nearly 60% of people with dementia currently live in low‐ and middle‐income countries (LMICs) and most new cases (71%) are expected to occur in those countries. The majority of people with dementia in those countries do not have access to care and support
Social innovation research checklist: A crowdsourcing open call and digital hackathon to develop a checklist for research to advance social innovation in health.
While social innovations in health have shown promise in closing the healthcare delivery gap, especially in low- and middle-income countries (LMICs), more research is needed to evaluate, scale up, and sustain social innovations. Research checklists can standardize and improve reporting of research findings, promote transparency, and increase replicability of study results and findings. This article describes the development of a 17-item social innovation in health research checklist to assess and report social innovation projects and provides examples of good reporting. The checklist is adapted from the TIDieR checklist and will facilitate more complete and transparent reporting and increase end user engagement. SUMMARY POINTS: While many social innovations have been developed and shown promise in closing the healthcare delivery gap, more research is needed to evaluate social innovationThe Social Innovation in Health Research Checklist, the first of its kind, is a 17-item checklist to improve reporting completeness and promote transparency in the development, implementation, and evaluation of social innovations in healthThe research checklist was developed through a three-step process, including a global open call for ideas, a scoping review, and a three-round modified Delphi processUse of this research checklist will enable researchers, innovators and partners to learn more about the process and results of social innovation in health research
Social Innovation For Health Research: Development of the SIFHR Checklist
BACKGROUND: Social innovations in health are inclusive solutions to address the healthcare delivery gap that meet the needs of end users through a multi-stakeholder, community-engaged process. While social innovations for health have shown promise in closing the healthcare delivery gap, more research is needed to evaluate, scale up, and sustain social innovation. Research checklists can standardize and improve reporting of research findings, promote transparency, and increase replicability of study results and findings. METHODS AND FINDINGS: The research checklist was developed through a 3-step community-engaged process, including a global open call for ideas, a scoping review, and a 3-round modified Delphi process. The call for entries solicited checklists and related items and was open between November 27, 2019 and February 1, 2020. In addition to the open call submissions and scoping review findings, a 17-item Social Innovation For Health Research (SIFHR) Checklist was developed based on the Template for Intervention Description and Replication (TIDieR) Checklist. The checklist was then refined during 3 rounds of Delphi surveys conducted between May and June 2020. The resulting checklist will facilitate more complete and transparent reporting, increase end-user engagement, and help assess social innovation projects. A limitation of the open call was requiring internet access, which likely discouraged participation of some subgroups. CONCLUSIONS: The SIFHR Checklist will strengthen the reporting of social innovation for health research studies. More research is needed on social innovation for health
Modifying effect of dual antiplatelet therapy on incidence of stent thrombosis according to implanted drug-eluting stent type
Aim To investigate the putative modifying effect of dual antiplatelet therapy (DAPT) use on the incidence of stent thrombosis at 3 years in patients randomized to Endeavor zotarolimus-eluting stent (E-ZES) or Cypher sirolimus-eluting stent (C-SES). Methods and results Of 8709 patients in PROTECT, 4357 were randomized to E-ZES and 4352 to C-SES. Aspirin was to be given indefinitely, and clopidogrel/ticlopidine for ≥3 months or up to 12 months after implantation. Main outcome measures were definite or probable stent thrombosis at 3 years. Multivariable Cox regression analysis was applied, with stent type, DAPT, and their interaction as the main outcome determinants. Dual antiplatelet therapy adherence remained the same in the E-ZES and C-SES groups (79.6% at 1 year, 32.8% at 2 years, and 21.6% at 3 years). We observed a statistically significant (P = 0.0052) heterogeneity in treatment effect of stent type in relation to DAPT. In the absence of DAPT, stent thrombosis was lower with E-ZES vs. C-SES (adjusted hazard ratio 0.38, 95% confidence interval 0.19, 0.75; P = 0.0056). In the presence of DAPT, no difference was found (1.18; 0.79, 1.77; P = 0.43). Conclusion A strong interaction was observed between drug-eluting stent type and DAPT use, most likely prompted by the vascular healing response induced by the implanted DES system. These results suggest that the incidence of stent thrombosis in DES trials should not be evaluated independently of DAPT use, and the optimal duration of DAPT will likely depend upon stent type (Clinicaltrials.gov number NCT00476957
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17
Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.
Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
Mapping 123 million neonatal, infant and child deaths between 2000 and 2017
Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations
- …