28 research outputs found
Genome-wide homozygosity and multiple sclerosis in Orkney and Shetland Islanders
There is strong evidence for both genetic and environmental risk factors comprising the aetiology of multiple sclerosis (MS). While much progress has been made in recent years in identifying common genetic variants using genome-wide association studies, alternative approaches have remained relatively neglected. The prevalence of MS in Orkney and Shetland is among the highest in the world. Previous studies have suggested that a higher degree of parental relatedness in these isolated communities may contribute to the high rates of MS, indicating that recessive effects have an important role in MS aetiology. The Northern Isles Multiple Sclerosis (NIMS) study investigated the potential role of genome-wide homozygosity in MS risk by genotyping 88 MS patients, 89 controls matched by age, sex and ancestry, and a further 89 controls matched for sex and ancestry, but passed the majority of lifetime risk of developing MS (>70 years of age). Three participants were removed on the basis of pedigree-genomic anomalies (n=263). Three measures of genome-wide homozygosity were generated for each individual, and association with MS was assessed using logistic regression models. No effect of genome-wide homozygosity was detected, indicating that inbreeding and consanguinity are not risk factors for MS in this population
Key challenges in bringing CRISPR-mediated somatic cell therapy into the clinic.
Genome editing using clustered regularly interspersed short palindromic repeats (CRISPR) and CRISPR-associated proteins offers the potential to facilitate safe and effective treatment of genetic diseases refractory to other types of intervention. Here, we identify some of the major challenges for clinicians, regulators, and human research ethics committees in the clinical translation of CRISPR-mediated somatic cell therapy
Novel genetic loci underlying human intracranial volume identified through genome-wide association
Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (Ïgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinsonâs disease, and enriched near genes involved in growth pathways including PI3KâAKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
Cerebral small vessel disease genomics and its implications across the lifespan
White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (pâ=â2.5Ă10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe
Cerebral small vessel disease genomics and its implications across the lifespan
White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5Ă10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.</p
Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting.
OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 à 10-8; and LINC00539/ZDHHC20, p = 5.82 à 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p [BI] = 9.38 à 10-25; p [SSBI] = 5.23 à 10-14 for hypertension), smoking (p [BI] = 4.4 à 10-10; p [SSBI] = 1.2 à 10-4), diabetes (p [BI] = 1.7 à 10-8; p [SSBI] = 2.8 à 10-3), previous cardiovascular disease (p [BI] = 1.0 à 10-18; p [SSBI] = 2.3 à 10-7), stroke (p [BI] = 3.9 à 10-69; p [SSBI] = 3.2 à 10-24), and MRI-defined white matter hyperintensity burden (p [BI] = 1.43 à 10-157; p [SSBI] = 3.16 à 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p †0.0022), without indication of directional pleiotropy. CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI
Adjusting for familial relatedness in the analysis of GWAS data
Relatedness within a sample can be of ancient (population stratification) or recent (familial structure) origin, and can either be known (pedigree data) or unknown (cryptic relatedness). All of these forms of familial relatedness have the potential to confound the results of genome-wide association studies. This chapter reviews the major methods available to researchers to adjust for the biases introduced by relatedness and maximize power to detect associations. The advantages and disadvantages of different methods are presented with reference to elements of study design, population characteristics, and computational requirements
All in the blood: a review of Aboriginal Australians\u27 cultural beliefs about blood and implications for biospecimen research
Public participation in medical research and biobanking is considered key to advances in scientific discovery and translation to improved health care. Cultural concerns relating to blood have been found to affect the participation of indigenous peoples and minorities in research, but such concerns are rarely specified in the literature. This article presents a review of the role of blood in Australian Aboriginal cultures. We discuss the range of meanings and uses of blood in traditional culture, including their use in ceremonies, healing, and sorcery. We draw on more recent literature on Aboriginal Australians and biomedicine to consider how traditional beliefs may be changing over time. These findings provide an empirical basis for researchers and bioethicists to develop culturally grounded strategies to boost the participation of Aboriginal Australians in biomedical research. They also serve as a model for integrating anthropological literature with bioethical concerns that could be applied to other indigenous and minority groups