41 research outputs found

    Fire safety and emergency evacuation guidelines for intensive care units and operating theatres: for use in the event of fire, flood, power cut, oxygen supply failure, noxious gas, structural collapse or other critical incidents

    Get PDF
    The need to evacuate an ICU or operating theatre complex during a fire or other emergency is a rare event but one potentially fraught with difficulty: Not only is there a risk that patients may come to harm but also that staff may be injured and unable to work. Designing newly-built or refurbished ICUs and operating theatre suites is an opportunity to incorporate mandatory fire safety features and improve the management and outcomes of such emergencies: These include well-marked manual fire call points and oxygen shut off valves (area valve service units); the ability to isolate individual zones; multiple clear exit routes; small bays or side rooms; preference for ground floor ICU location and interconnecting routes with operating theatres; separate clinical and non-clinical areas. ICUs and operating theatre suites should have a bespoke emergency evacuation plan and route map that is readily available. Staff should receive practical fire and evacuation training in their clinical area of work on induction and annually as part of mandatory training, including ‘walk-through practice’ or simulation training and location of manual fire call points and fire extinguishers, evacuation routes and location and operation of area valve service units. The staff member in charge of each shift should be able to select and operate fire extinguishers and lead an evacuation. Following an emergency evacuation, a network-wide response should be activated, including retrieval and transport of patients to other ICUs if needed. A full investigation should take place and ongoing support and follow-up of staff provided

    A web-based intervention to promote physical activity in adolescents and young adults with cystic fibrosis: protocol for a randomized controlled trial

    Get PDF
    BACKGROUND Regular participation in physical activity by people with cystic fibrosis (CF) promotes positive clinical and health outcomes including reduced rate of decline in lung function, fewer hospitalizations and greater wellbeing. However adherence to exercise and activity programs is low, in part due to the substantial daily therapy burden for young people with CF. Strict infection control requirements limit the role of group exercise programs that are commonly used in other clinical groups. Investigation of methods to promote physical activity in this group has been limited. The Active Online Physical Activity in Cystic fibrosis Trial (ActionPACT) is an assessor-blinded, multi-centre, randomized controlled trial designed to compare the efficacy of a novel web-based program (ActivOnline) compared to usual care in promoting physical activity participation in adolescents and young adults with CF. METHODS Adolescents and young adults with CF will be recruited on discharge from hospital for a respiratory exacerbation. Participants randomized to the intervention group will have access to a web-based physical activity platform for the 12-week intervention period. ActivOnline allows users to track their physical activity, set goals, and self-monitor progress. All participants in both groups will be provided with standardised information regarding general physical activity recommendations for adolescents and young adults. Outcomes will be assessed by a blinded assessor at baseline, after completion of the intervention, and at 3-months followup. Healthcare utilization will be assessed at 12 months from intervention completion. The primary outcome is change in moderate-to-vigorous physical activity participation measured objectively by accelerometry. Secondary outcomes include aerobic fitness, health-related quality of life, anxiety and depression and sleep quality. DISCUSSION This trial will establish whether a web-based application can improve physical activity participation more effectively than usual care in the period following hospitalization for a respiratory exacerbation. The web-based application under investigation can be made readily and widely available to all individuals with CF, to support physical activity and exercise participation at a time and location of the user’s choosing, regardless of microbiological status. TRIAL REGISTRATION Clinical trial registered on July 13, 2017 with the Australian and New Zealand Clinical Trials Register at (ACTRN12617001009303)

    Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China:lessons learnt and international expert recommendations

    Get PDF
    Tracheal intubation in coronavirus disease 2019 (COVID-19) patients creates a risk to physiologically compromised patients and to attending healthcare providers. Clinical information on airway management and expert recommendations in these patients are urgently needed. By analysing a two-centre retrospective observational case series from Wuhan, China, a panel of international airway management experts discussed the results and formulated consensus recommendations for the management of tracheal intubation in COVID-19 patients. Of 202 COVID-19 patients undergoing emergency tracheal intubation, most were males (n=136; 67.3%) and aged 65 yr or more (n=128; 63.4%). Most patients (n=152; 75.2%) were hypoxaemic (Sao2 <90%) before intubation. Personal protective equipment was worn by all intubating healthcare workers. Rapid sequence induction (RSI) or modified RSI was used with an intubation success rate of 89.1% on the first attempt and 100% overall. Hypoxaemia (Sao2 <90%) was common during intubation (n=148; 73.3%). Hypotension (arterial pressure <90/60 mm Hg) occurred in 36 (17.8%) patients during and 45 (22.3%) after intubation with cardiac arrest in four (2.0%). Pneumothorax occurred in 12 (5.9%) patients and death within 24 h in 21 (10.4%). Up to 14 days post-procedure, there was no evidence of cross infection in the anaesthesiologists who intubated the COVID-19 patients. Based on clinical information and expert recommendation, we propose detailed planning, strategy, and methods for tracheal intubation in COVID-19 patients

    Effects of sleep disturbance on dyspnoea and impaired lung function following hospital admission due to COVID-19 in the UK:a prospective multicentre cohort study

    Get PDF
    BACKGROUND: Sleep disturbance is common following hospital admission both for COVID-19 and other causes. The clinical associations of this for recovery after hospital admission are poorly understood despite sleep disturbance contributing to morbidity in other scenarios. We aimed to investigate the prevalence and nature of sleep disturbance after discharge following hospital admission for COVID-19 and to assess whether this was associated with dyspnoea. METHODS: CircCOVID was a prospective multicentre cohort substudy designed to investigate the effects of circadian disruption and sleep disturbance on recovery after COVID-19 in a cohort of participants aged 18 years or older, admitted to hospital for COVID-19 in the UK, and discharged between March, 2020, and October, 2021. Participants were recruited from the Post-hospitalisation COVID-19 study (PHOSP-COVID). Follow-up data were collected at two timepoints: an early time point 2-7 months after hospital discharge and a later time point 10-14 months after hospital discharge. Sleep quality was assessed subjectively using the Pittsburgh Sleep Quality Index questionnaire and a numerical rating scale. Sleep quality was also assessed with an accelerometer worn on the wrist (actigraphy) for 14 days. Participants were also clinically phenotyped, including assessment of symptoms (ie, anxiety [Generalised Anxiety Disorder 7-item scale questionnaire], muscle function [SARC-F questionnaire], dyspnoea [Dyspnoea-12 questionnaire] and measurement of lung function), at the early timepoint after discharge. Actigraphy results were also compared to a matched UK Biobank cohort (non-hospitalised individuals and recently hospitalised individuals). Multivariable linear regression was used to define associations of sleep disturbance with the primary outcome of breathlessness and the other clinical symptoms. PHOSP-COVID is registered on the ISRCTN Registry (ISRCTN10980107). FINDINGS: 2320 of 2468 participants in the PHOSP-COVID study attended an early timepoint research visit a median of 5 months (IQR 4-6) following discharge from 83 hospitals in the UK. Data for sleep quality were assessed by subjective measures (the Pittsburgh Sleep Quality Index questionnaire and the numerical rating scale) for 638 participants at the early time point. Sleep quality was also assessed using device-based measures (actigraphy) a median of 7 months (IQR 5-8 months) after discharge from hospital for 729 participants. After discharge from hospital, the majority (396 [62%] of 638) of participants who had been admitted to hospital for COVID-19 reported poor sleep quality in response to the Pittsburgh Sleep Quality Index questionnaire. A comparable proportion (338 [53%] of 638) of participants felt their sleep quality had deteriorated following discharge after COVID-19 admission, as assessed by the numerical rating scale. Device-based measurements were compared to an age-matched, sex-matched, BMI-matched, and time from discharge-matched UK Biobank cohort who had recently been admitted to hospital. Compared to the recently hospitalised matched UK Biobank cohort, participants in our study slept on average 65 min (95% CI 59 to 71) longer, had a lower sleep regularity index (-19%; 95% CI -20 to -16), and a lower sleep efficiency (3·83 percentage points; 95% CI 3·40 to 4·26). Similar results were obtained when comparisons were made with the non-hospitalised UK Biobank cohort. Overall sleep quality (unadjusted effect estimate 3·94; 95% CI 2·78 to 5·10), deterioration in sleep quality following hospital admission (3·00; 1·82 to 4·28), and sleep regularity (4·38; 2·10 to 6·65) were associated with higher dyspnoea scores. Poor sleep quality, deterioration in sleep quality, and sleep regularity were also associated with impaired lung function, as assessed by forced vital capacity. Depending on the sleep metric, anxiety mediated 18-39% of the effect of sleep disturbance on dyspnoea, while muscle weakness mediated 27-41% of this effect. INTERPRETATION: Sleep disturbance following hospital admission for COVID-19 is associated with dyspnoea, anxiety, and muscle weakness. Due to the association with multiple symptoms, targeting sleep disturbance might be beneficial in treating the post-COVID-19 condition. FUNDING: UK Research and Innovation, National Institute for Health Research, and Engineering and Physical Sciences Research Council

    The Tangibility of Personalized 3D-Printed Feedback May Enhance Youths' Physical Activity Awareness, Goal Setting, and Motivation: Intervention Study

    Get PDF
    Background: In the United Kingdom, most youth fail to achieve the government guideline of 60 min of moderate to vigorous physical activity (MVPA) daily. Reasons that are frequently cited for the underachievement of this guideline include (1) a lack of awareness of personal physical activity levels (PALs) and (2) a lack of understanding of what activities and different intensities contribute to daily targets of physical activity (PA). Technological advances have enabled novel ways of representing PA data through personalized tangible three-dimensional (3D) models. Objective: The purpose of this study was to investigate the efficacy of 3D-printed models to enhance youth awareness and understanding of and motivation to engage in PA. Methods: A total of 39 primary school children (22 boys; mean age 7.9 [SD 0.3] years) and 58 secondary school adolescents (37 boys; mean age 13.8 [SD 0.3] years) participated in a 7-week fading intervention, whereby participants were given 3D-printed models of their previous week’s objectively assessed PALs at 4 time points. Following the receipt of their 3D model, each participant completed a short semistructured video interview (children, 4.5 [SD 1.2] min; adolescents, 2.2 [SD 0.6] min) to assess their PA awareness, understanding, and motivation. Data were transcribed verbatim and thematically analyzed to enable key emergent themes to be further explored and identified. Results: Analyses revealed that the 3D models enhanced the youths’ awareness of and ability to recall and self-evaluate their PA behaviors. By the end of the study, the youths, irrespective of age, were able to correctly identify and relate to the government’s PA guideline represented on the models, despite their inability to articulate the government's guideline through time and intensity. Following the fourth 3D model, 72% (71/97) of the youths used the models as a goal-setting strategy, further highlighting such models as a motivational tool to promote PA.Conclusions: The results suggest that 3D-printed models of PA enhanced the youths’ awareness of their PA levels and provided a motivational tool for goal setting, potentially offering a unique strategy for future PA promotion

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore