85 research outputs found

    Clinical Oncology Society of Australia: Position statement on cancer-related malnutrition and sarcopenia

    Get PDF
    © 2020 The Authors. Nutrition & Dietetics published by John Wiley & Sons Australia, Ltd on behalf of Dietitians Australia. This position statement describes the recommendations of the Clinical Oncology Society of Australia (COSA) regarding management of cancer-related malnutrition and sarcopenia. A multidisciplinary working group completed a review of the literature, focused on evidence-based guidelines, systematic reviews and meta-analyses, to develop recommendations for the position statement. National consultation of the position statement content was undertaken through COSA members. All people with cancer should be screened for malnutrition and sarcopenia in all health settings at diagnosis and as the clinical situation changes throughout treatment and recovery. People identified as “at risk” of malnutrition or with a high-risk cancer diagnosis or treatment plan should have a comprehensive nutrition assessment; people identified as “at risk” of sarcopenia should have a comprehensive evaluation of muscle status using a combination of assessments for muscle mass, muscle strength and function. All people with cancer-related malnutrition and sarcopenia should have access to the core components of treatment, including medical nutrition therapy, targeted exercise prescription and physical and psychological symptom management. Treatment for cancer-related malnutrition and sarcopenia should be individualised, in collaboration with the multidisciplinary team (MDT), and tailored to meet needs at each stage of cancer treatment. Health services should ensure a broad range of health care professionals across the MDT have the skills and confidence to recognise malnutrition and sarcopenia to facilitate timely referrals and treatment. The position statement is expected to provide guidance at a national level to improve the multidisciplinary management of cancer-related malnutrition and sarcopenia

    A globally relevant change taxonomy and evidence-based change framework for land monitoring

    Get PDF
    A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-State�Impact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation ‘impact (pressure)’, with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term is defined separately, allowing flexible combination into ‘impact (pressure)’ categories, and all are listed in an openly accessible glossary to ensure consistent use and common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from groundbased, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processes—including land degradation, desertification and ecosystem restoration—the overall framework addresses a wide and diverse range of local to international needs including those relevant to policy, socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including impact mitigation actions

    A globally relevant change taxonomy and evidence-based change framework for land monitoring

    Get PDF
    A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-State-Impact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation 'impact (pressure)', with this encompassing the consequence of observed change and associated reason(s), and uses scale-independent terms that factor in time. Evidence for different impacts is gathered through temporal comparison (e.g., days, decades apart) of land cover classes constructed and described from Environmental Descriptors (EDs; state indicators) with pre-defined measurement units (e.g., m, %) or categories (e.g., species type). Evidence for pressures, whether abiotic, biotic or human-influenced, is similarly accumulated, but EDs often differ from those used to determine impacts. Each impact and pressure term is defined separately, allowing flexible combination into 'impact (pressure)' categories, and all are listed in an openly accessible glossary to ensure consistent use and common understanding. The taxonomy and framework are globally relevant and can reference EDs quantified on the ground, retrieved/classified remotely (from ground-based, airborne or spaceborne sensors) or predicted through modelling. By providing capacity to more consistently describe change processes-including land degradation, desertification and ecosystem restoration-the overall framework addresses a wide and diverse range of local to international needs including those relevant to policy, socioeconomics and land management. Actions in response to impacts and pressures and monitoring towards targets are also supported to assist future planning, including impact mitigation actions

    Multicountry survey of emergency and critical care medicine physicians' fluid resuscitation practices for adult patients with early septic shock

    Get PDF
    Evidence to guide fluid resuscitation evidence in sepsis continues to evolve. We conducted a multicountry survey of emergency and critical care physicians to describe current stated practice and practice variation related to the quantity, rapidity and type of resuscitation fluid administered in early septic shock to inform the design of future septic shock fluid resuscitation trials.Using a web-based survey tool, we invited critical care and emergency physicians in Canada, the UK, Scandinavia and Saudi Arabia to complete a self-administered electronic survey.A total of 1097 physicians responses were included. 1 L was the most frequent quantity of resuscitation fluid physicians indicated they would administer at a time (46.9%, n=499). Most (63.0%, n=671) stated that they would administer the fluid challenges as quickly as possible. Overall, normal saline and Ringers solutions were the preferred crystalloid fluids used often or always in 53.1% (n=556) and 60.5% (n=632) of instances, respectively. However, emergency physicians indicated that they would use normal saline often or always in 83.9% (n=376) of instances, while critical care physicians said that they would use saline often or always in 27.9% (n=150) of instances. Only 1.0% (n=10) of respondents indicated that they would use hydroxyethyl starch often or always; use of 5% (5.6% (n=59)) or 20-25% albumin (1.3% (n=14)) was also infrequent. The majority (88.4%, n=896) of respondents indicated that a large randomised controlled trial comparing 5% albumin to a crystalloid fluid in early septic shock was important to conduct.Critical care and emergency physicians stated that they rapidly infuse volumes of 500-1000 mL of resuscitation fluid in early septic shock. Colloid use, specifically the use of albumin, was infrequently reported. Our survey identifies the need to conduct a trial on the efficacy of albumin and crystalloids on 90-day mortality in patients with early septic shock

    Age of Transfused Blood in Critically Ill Adults

    Get PDF
    International audienceBetween March 2009 and May 2014, at 64 centers in Canada and Europe, 1211 patients were assigned to receive fresh red cells (fresh-blood group) and 1219 patients were assigned to receive standard-issue red cells (standard-blood group). Red cells were stored a mean (±SD) of 6.1±4.9 days in the fresh-blood group as compared with 22.0±8.4 days in the standard-blood group (P<0.001). At 90 days, 448 patients (37.0%) in the fresh-blood group and 430 patients (35.3%) in the standard-blood group had died (absolute risk difference, 1.7 percentage points; 95% confidence interval [CI], -2.1 to 5.5). In the survival analysis, the hazard ratio for death in the fresh-blood group, as compared with the standard-blood group, was 1.1 (95% CI, 0.9 to 1.2; P=0.38). There were no significant between-group differences in any of the secondary outcomes (major illnesses; duration of respiratory, hemodynamic, or renal support; length of stay in the hospital; and transfusion reactions) or in the subgroup analyses.CONCLUSIONS:Transfusion of fresh red cells, as compared with standard-issue red cells, did not decrease the 90-day mortality among critically ill adults

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore