227 research outputs found

    Video analysis and verification of direct head impacts recorded by wearable sensors in junior rugby league players

    Get PDF
    Background: Rugby league is a high-intensity collision sport that carries a risk of concussion. Youth athletes are considered to be more vulnerable and take longer to recover from concussion than adult athletes. Purpose: To review head impact events in elite-level junior representative rugby league and to verify and describe characteristics of X-patchTM-recorded impacts via video analysis. Study Design: Observational case series. Methods: The X-patchTM was used on twenty-one adolescent players (thirteen forwards and eight backs) during a 2017 junior representative rugby league competition. Game-day footage, recorded by a trained videographer from a single camera, was synchronised with X-patchTM-recorded timestamped events. Impacts were double verified by video review. Impact rates, playing characteristics, and gameplay situations were described. Results: The X-patchTM-recorded 624 impacts ā‰„ 20g between game start and finish, of which 564 (90.4%) were verified on video. Upon video review, 413 (73.2%) of all verified impacts ā‰„ 20g where determined to be direct head impacts. Direct head impacts ā‰„ 20g occurred at a rate of 5.2 impacts per game hour; 7.6 for forwards and 3.0 for backs (range = 0ā€“18.2). A defenderā€™s arm directly impacting the head of the ball carrier was the most common event, accounting for 21.3% (n = 120) of all impacts, and 46.7% of all ā€œhit-upā€ impacts. There were no medically diagnosed concussions during the competition. Conclusion: The majority (90.4%) of head impacts ā‰„ 20g recorded by the X-patchTM sensor were verified by video. Double verification of direct head impacts in addition to cross-verification of sensor-recorded impacts using a secondary source such as synchronised video review can be used to ensure accuracy and validation of data

    Verifying head impacts recorded by a wearable sensor using video footage in rugby league: A preliminary study

    Get PDF
    Background: Rugby league is a full-contact collision sport with an inherent risk of concussion. Wearable instrumented technology was used to observe and characterize the level of exposure to head impacts during game play. Purpose: To verify the impacts recorded by the x-patchā„¢ with video analysis. Study design: Observational case series. Methods: The x-patchā„¢ was used on eight menā€™s semi-professional rugby league players during the 2016 Newcastle Rugby League competition (five forwards and three backs). Game day footage was recorded by a trained videographer using a single camera located at the highest midfield location to verify the impact recorded by the x-patchā„¢. Videographic and accelerometer data were time synchronized. Results: The x-patchā„¢ sensors recorded a total of 779 impacts ā‰„ā€‰20ā€‰g during the games, of which 732 (94.0%) were verified on video. In addition, 817 impacts were identified on video that did not record an impact on the sensors. The number of video-verified impacts ā‰„ā€‰20ā€‰g, per playing hour, was 7.8 for forwards and 4.8 for backs (rangeā€‰=ā€‰3.9ā€“19.0). Impacts resulting in a diagnosed concussion had much greater peak linear acceleration (Mā€‰=ā€‰76.1ā€‰g, SDā€‰=ā€‰17.0) than impacts that did not result in a concussion (Mā€‰=ā€‰34.2g, SDā€‰=ā€‰18.0; Cohenā€™s dā€‰=ā€‰2.4). Conclusions: The vast majority (94%) of impacts ā‰„ā€‰20ā€‰g captured by the x-patchā„¢ sensor were video verified in semi-professional rugby league games. The use of a secondary source of information to verify impact events recorded by wearable sensors is beneficial in clarifying game events and exposure levels

    Impaired peripheral reaching and on-line corrections in patient DF: optic ataxia with visual form agnosia

    Get PDF
    An influential model of vision suggests the presence of two visual streams within the brain: a dorsal occipito-parietal stream which mediates action and a ventral occipito-temporal stream which mediates perception. One of the cornerstones of this model is DF, a patient with visual form agnosia following bilateral ventral stream lesions. Despite her inability to identify and distinguish visual stimuli, DF can still use visual information to control her hand actions towards these stimuli. These observations have been widely interpreted as demonstrating a double dissociation from optic ataxia, a condition observed after bilateral dorsal stream damage in which patients are unable to act towards objects that they can recognize. In Experiment 1, we investigated how patient DF performed on the classical diagnostic task for optic ataxia, reaching in central and peripheral vision. We replicated recent findings that DF is remarkably inaccurate when reaching to peripheral targets, but not when reaching in free vision. In addition we present new evidence that her peripheral reaching errors follow the optic ataxia pattern increasing with target eccentricity and being biased towards fixation. In Experiments 2 and 3, for the first time we examined DFā€™s on-line control of reaching using a double-step paradigm in fixation-controlled and free-vision versions of the task. DF was impaired when performing fast on-line corrections on all conditions tested, similarly to optic ataxia patients. Our findings question the long-standing assumption that DFā€™s dorsal visual stream is functionally intact and that her on-line visuomotor control is spared. In contrast, in addition to visual form agnosia, DF also has visuomotor symptoms of optic ataxia which are most likely explained by bilateral damage to the superior parietal occipital cortex. We thus conclude that patient DF can no longer be considered as an appropriate single-case model for testing the neural basis of perception and action dissociations

    Tephra layers : a controlling factor on submarine translational sliding?

    Get PDF
    Submarine slope failures occur at all continental margins, but the processes generating different mass wasting phenomena remain poorly understood. Multibeam bathymetry mapping of the Middle America Trench reveals numerous continental slope failures of different dimensions and origin. For example, large rotational slumps have been interpreted to be caused by slope collapse in the wake of subducting seamounts. In contrast, the mechanisms generating translational slides have not yet been described. Lithology, shear strength measurements, density, and pore water alkalinity from a sediment core across a slide plane indicate that a few centimeters thick intercalated volcanic tephra layer marks the detachment surface. The ash layer can be correlated to the San Antonio tephra, emplaced by the 6000 year old caldera-forming eruption from Masaya-Caldera, Nicaragua. The distal deposits of this eruption are widespread along the continental slope and ocean plate offshore Nicaragua. Grain size measurements permit us to estimate the reconstruction of the original ash layer thickness at the investigated slide. Direct shear test experiments on Middle American ashes show a high volume reduction during shearing. This indicates that marine tephra layers have the highest hydraulic conductivity of the different types of slope sediment, enabling significant volume reduction to take place under undrained conditions. This makes ash layers mechanically distinct within slope sediment sequences. Here we propose a mechanism by which ash layers may become weak planes that promote translational sliding. The mechanism implies that ground shaking by large earthquakes induces rearrangement of ash shards causing their compaction (volume reduction) and produces a rapid accumulation of water in the upper part of the layer that is capped by impermeable clay. The water-rich veneer abruptly reduces shear strength, creating a detachment plane for translational sliding. Tephra layers might act as slide detachment planes at convergent margins of subducting zones, at submarine slopes of volcanic islands, and at submerged volcano slopes in lakes

    Gait disorders are associated with non-cardiovascular falls in elderly people: a preliminary study

    Get PDF
    BACKGROUND: The association between unexplained falls and cardiovascular causes is increasingly recognized. Neurally mediated cardiovascular disorders and hypotensive syndromes are found in almost 20 percent of the patients with unexplained falls. However, the approach to these patients remains unclear. Gait assessment might be an interesting approach to these patients as clinical observations suggests that those with cardiovascular or hypotensive causes may not manifest obvious gait alterations. Our primary objective is to analyze the association between gait disorders and a non-cardiovascular cause of falls in patients with unexplained falls. A second objective is to test the sensitivity and specificity of a gait assessment approach for detecting non-cardiovascular causes when compared with intrinsic-extrinsic classification. METHODS: Cross-sectional study performed in a falls clinic at a university hospital in 41 ambulatory elderly participants with unexplained falls. Neurally mediated cardiovascular conditions, neurological diseases, gait and balance problems were assessed. Gait disorder was defined as a gait velocity < 0.8 m/s or Tinetti Gait Score <9. An attributable etiology of the fall was determined in each participant. Comparisons between the gait assessment approach and the attributable etiology regarding a neurally mediated cardiovascular cause were performed. Fisher exact test was used to test the association hypothesis. Sensitivity and specificity of gait assessment approach and intrinsic-extrinsic classification to detect a non-cardiovascular mediated fall was calculated with 95% confidence intervals (CI95%). RESULTS: A cardiovascular etiology (orthostatic and postprandial hypotension, vasovagal syndrome and carotid sinus hypersensitivity) was identified in 14% of participants (6/41). Of 35 patients with a gait disorder, 34 had a non-cardiovascular etiology of fall; whereas in 5 out of 6 patients without a gait disorder, a cardiovascular diagnosis was identified (p < 0.001). Sensitivity and specificity of the presence of gait disorder for identifying a non-cardiovascular mediated cause was 97.1% (CI95% = 85ā€“99) and 83% (CI95% = 36ā€“99), respectively. CONCLUSION: In community dwelling older persons with unexplained falls, gait disorders were associated with non-cardiovascular diagnosis of falls. Gait assessment was a useful approach for the detection of a non-cardiovascular mediated cause of falls, providing additional value to this assessment

    Latest Developments in Metalloenzyme Design and Repurposing

    Get PDF
    In the past decade, artificial metalloenzymes (AMEs) have emerged as attractive alternatives to more traditional homogeneous catalysts and enzymes. This microreview presents a selection of recent achievements in the design of such hybrid catalysts. These include artificial zinc hydrolases and metathesases, the heme-protein repurposing for Cā€“H, Nā€“H, and Sā€“H insertion reactions, novel light-driven redox hybrid catalysts, novel scaffold proteins, and metallocofactor anchoring techniques and metalloenzyme models

    Reduced prefrontal gyrification in obsessiveā€“compulsive disorder

    Get PDF
    Structural magnetic resonance imaging (MRI) studies reveal evidence for brain abnormalities in obsessiveā€“compulsive disorder (OCD), for instance, reduction of gray matter volume in the prefrontal cortex. Disturbances of gyrification in the prefrontal cortex have been described several times in schizophrenia pointing to a neurodevelopmental etiology, while gyrification has not been studied so far in OCD patients. In 26 OCD patients and 38 healthy control subjects MR-imaging was performed. Prefrontal cortical folding (gyrification) was measured bilaterally by an automated version of the automated-gyrification index (A-GI), a ratio reflecting the extent of folding, from the slice containing the inner genu of the corpus callosum up to the frontal pole. Analysis of covariance (ANCOVA, independent factor diagnosis, covariates age, duration of education) demonstrated that compared with control subjects, patients with OCD displayed a significantly reduced A-GI in the left hemisphere (pĀ =Ā 0.021) and a trend for a decreased A-GI in the right hemisphere (pĀ =Ā 0.076). Significant correlations between prefrontal lobe volume and A-GI were only observed in controls, but not in OCD patients. In conclusion, prefrontal hypogyrification in OCD patients may be a structural correlate of the impairment in executive function of this patient group and may point to a neurodevelopmental origin of this disease

    The Lancet Breast Cancer Commission: tackling a global health, gender, and equity challenge

    Get PDF
    Breast cancer is an increasing global health, gender, socioeconomic, and equity challenge. In 2020, 2Ā·3 million women were diagnosed with breast cancer and there were 685ā€‰000 deaths worldwide.1 Not only is breast cancer the highest incident cancer globally, but it is also the most prevalent, causing more disability-adjusted life-years lost than any other malignancy. Tackling breast cancer is a formidable task for health-care systems, policy makers, and other stakeholders. The numbers of people with metastatic breast cancer who go uncounted are concerning. Cancer registries record patients initially presenting with de-novo metastatic breast cancer, but data on those who develop metastases after a diagnosis of early breast cancer are scarce. In a world focused on breast cancer cure, these uncounted people living with metastatic disease face abandonment and stigma
    • ā€¦
    corecore