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ABSTRACT 

An influential model of vision suggests the presence of two visual streams within the brain: a 

dorsal occipito-parietal stream which mediates action and a ventral occipito-temporal stream 

which mediates perception. One of the cornerstones of this model is DF, a patient with visual 

form agnosia following bilateral ventral stream lesions. Despite her inability to identify and 

distinguish visual stimuli, DF can still use visual information to control her hand actions 

towards these stimuli. These observations have been widely interpreted as demonstrating a 

double dissociation from optic ataxia, a condition observed after bilateral dorsal stream 

damage in which patients are unable to act towards objects that they can recognize. In 

Experiment 1, we investigated how patient DF performed on the classical diagnostic task for 

optic ataxia, reaching in central and peripheral vision. We replicated recent findings that DF 

is remarkably inaccurate when reaching to peripheral targets, but not when reaching in free 

vision. In addition we present new evidence that her peripheral reaching errors follow the 

optic ataxia pattern increasing with target eccentricity and being biased towards fixation. In 

Experiments 2 and 3, for the first time we examined DF’s on-line control of reaching using a 

double-step paradigm in fixation-controlled and free-vision versions of the task. DF was 

impaired when performing fast on-line corrections on all conditions tested, similarly to optic 

ataxia patients. Our findings question the long-standing assumption that DF’s dorsal visual 

stream is functionally intact and that her on-line visuomotor control is spared. In contrast, in 

addition to visual form agnosia, DF also has visuomotor symptoms of optic ataxia which are 

most likely explained by bilateral damage to the superior parietal occipital cortex. We thus 

conclude that patient DF can no longer be considered as an appropriate single-case model for 

testing the neural basis of perception and action dissociations.  

KEYWORDS  
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1. Introduction 

According to the influential perception-action model (Goodale & Milner, 1992; Milner & 

Goodale, 1995, 2006) the two cortical streams of visual processing are specialised for distinct 

behavioural functions: the dorsal (occipito-parietal) stream supports the visual control of 

actions, and the ventral (occipito-temporal) stream mediates vision for perception. Over the 

last 25 years this model has received strong support from monkey neurophysiology, 

neuroimaging and behavioural experiments in neurologically intact participants (Milner & 

Goodale, 2008; Goodale, 2011, 2014); but the most widely influential evidence for its key 

assertions comes from reported perception and action dissociations in neurological patients 

(Milner et al., 1991; Goodale et al., 1991; Goodale & Milner, 1992).  

DF is an extensively-studied patient who acquired profound visual form agnosia 

following bilateral ventral stream damage sustained in a near-fatal episode of carbon 

monoxide poisoning (Milner et al., 1991). Despite her inability to identify and distinguish 

visual stimuli, DF could still use visual information to control her hand actions towards these 

stimuli (Milner et al., 1991; Goodale et al., 1991; Goodale et al., 1994). While her perceptual 

deficits were directly linked to extensive bilateral damage to her ventral stream, her spared 

visuomotor skills were attributed to an intact dorsal stream (Milner et al., 1991; Goodale et 

al., 1991; Goodale et al., 1994; James et al., 2003). Consistent with this picture, a 

complementary dissociation was claimed for patients with dorsal stream lesions and optic 

ataxia, who were impaired in action but had intact perceptual abilities (Rossetti, Pisella & 

Vighetto, 2003; Rossetti et al., 2005; Perenin & Vighetto, 1988; Karnath & Perenin, 2005). 

These contrasting patterns have been widely interpreted as a double dissociation between 

visual form agnosia (DF) and optic ataxia (e.g., Goodale & Milner, 1992; Milner & Goodale, 

1995, 2006; Rossetti, 1998). 
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However, in recent years, the evidential basis for this double dissociation has been 

questioned. Firstly, it has been pointed out that the behavioural evidence for a double-

dissociation is, at best incomplete, since the two patient groups (visual form agnosia and optic 

ataxia) have not been tested under appropriately matched conditions (Rossetti, Pisella & 

Vighetto, 2003; Pisella et al., 2006). Pisella and colleagues (2006) emphasised that the 

visuomotor deficits in optic ataxia are generally restricted to peripheral vision, with 

performance near-normal in central vision; however, the sparing of perceptual functions in 

these patients had been shown mainly in central vision. When more specific assessments of 

perception in peripheral vision were made, there was evidence for significant deficiencies in 

optic ataxic patients (Michel & Henaff, 2004; Perenin & Vighetto, 1988; Pisella et al., 2009; 

Rossetti et al., 2005). These perceptual deficiencies are now widely accepted, though it is still 

unclear whether they are secondary to problems orienting attention toward the affected region 

of space (Blangero et al., 2010; McIntosh et al., 2011; Michel & Henaff, 2004; Pisella et al., 

2009; Striemer et al., 2007, 2009). 

In visual form agnosia (represented chiefly by patient DF), the common contrast has 

been done between impaired perception and preserved action in central vision. In fact, the 

evidence on DF’s visuomotor guidance to peripheral visual targets is limited to one brief 

report within a book chapter (Milner, Dijkerman & Carey, 1999), describing a task that 

“required DF to make manual pointing responses towards targets presented at eight different 

locations… in the frontal plane of the subject” (p.447). Target locations were not further 

specified, and the report did not state whether and how fixation was controlled, nor for how 

long were the LED targets lit. Data analysis was via a graphical comparison of DF’s mean 

absolute error (across all locations) to three control subjects. This experiment has not been 

formally reported, although the data figure has been reproduced at least twice (Figure 14.4, 

Carey, 2010; Figure 2, Milner & Goodale, 2008). So although the figure did not suggest any 
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problem with immediate pointing to peripheral targets (albeit DF’s mean error is marginally 

higher than in controls), the issue clearly merited further study, especially given the 

theoretical importance of the proposed double-dissociation with optic-ataxia. 

To fill this gap, Hesse, Ball & Schenk (2012, 2014) investigated DF’s performance in 

central and peripheral vision in more detail, studying grip-scaling in grasping and accuracy in 

pointing. Surprisingly, rather than showing the expected preservation across the visual field, 

DF’s pattern matched that found in optic ataxia, with good performance when free vision was 

allowed, but impaired grip-scaling and pointing accuracy for peripheral targets when fixation 

was controlled. Although not formally analysed, the general character of the impairment was 

also similar to optic ataxia, in that the grasp tended to be uniformly over-scaled, and pointing 

in either hemifield erred toward fixation, increasing in magnitude with target eccentricity 

(across the two studies, targets from 4° to 18.4° were tested). The second of these studies 

showed that DF’s pointing impairment affected both hands, as well as both visual fields 

(Hesse et al., 2014). 

Hesse and colleagues entertained two main possibilities to explain these unexpected 

facts. The first is that visuomotor deficits resembling optic ataxia can arise from the ventral 

stream damage that has been emphasised in case descriptions of DF. The second is that the 

resemblance is not coincidental, and that DF actually has bilateral optic ataxia, in addition to 

visual form agnosia, due to damage to her dorsal stream bilaterally. This second account 

would be consistent with the typically diffuse consequences of carbon monoxide intoxication, 

and gains considerable plausibility from a close reading of the brain imaging findings in DF. 

Milner et al. (1991) indeed noted, at one year post-accident, bilateral damage in DF’s medial 

parieto-occipital cortex, though James et al’s well-cited fMRI study (2003) reported only a 

small lesion in the left posterior parietal cortex (see also Steeves et al., 2006 and Cavina-

Pratesi et al., 2010a,b). The most recent MRI study has confirmed that DF’s cortical thickness 
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is considerably reduced in both left and right intraparietal and parieto-occipital sulci (Bridge 

et al., 2013). 

In James et al’s functional data, the only dorsal stream region robustly and 

specifically active during grasping, compared with reaching, with the dominant (right) hand 

was the right anterior intraparietal sulcus (aIPS). This is consistent with a key role for aIPS in 

grasping in both humans and monkeys (Binkofski et al., 1998; Culham et al., 2003; Frey et 

al., 2005; Begliomini et al., 2007a,b; Cavina-Pratesi et al., 2010c; Monaco et al., 2014, 2015; 

Murata et al., 2000; Gardner et al., 2007; Davare et al., 2007). James et al. (2003) thus 

concluded that DF's dorsal stream was functioning well, explaining her spared visuomotor 

skills. Nevertheless, DF’s right-lateralized activation contrasts with the usual left-dominant 

activation for right hand grasping reported in healthy participants (Beurze et al., 2007; Stark 

& Zohary, 2008; Gallivan et al., 2013; Rossit et al., 2013). Moreover, unlike controls, DF 

showed no significant activation, during reaching or grasping, in either left or right superior 

parieto-occipital cortex (SPOC) (James et al., 2003). SPOC has repeatedly been shown to be 

involved in visuomotor control, especially in peripheral vision, in humans and monkeys 

(Astafiev et al., 2003; Connolly, Andersen & Goodale, 2003; Prado et al., 2005; Filimon et 

al., 2009; Cavina-Pratesi et al., 2010c; Gallivan et al., 2011; Monaco et al., 2011, 2015; 

Rossit et al., 2013; Martin et al., 2015; Fattori et al., 2001; 2009, 2010; Breveglieri et al., 

2016), and damage to this region provokes visuomotor deficits including peripheral 

misreaching, the core sign of optic ataxia (Battaglini et al., 2002; Karnath & Perenin, 2005; 

Pisella et al., 2009; Rossit et al., 2009; Hwang et al., 2012; Anderson et al., 2014) and even 

‘magnetic misreaching’ toward the point of fixation (Buxbaum & Costlett, 1997; Carey, 

Coleman & Della Sala, 1997; Buxbaum & Costlett, 1998; Jackson, Newport, Mort & Husain, 

2005; Jackson et al., 2009). 
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The idea of bilateral damage to the parieto-occipital cortex, with functional 

impairment of SPOC bilaterally (and, perhaps, aIPS in the left hemisphere) could very well 

explain why Hesse and colleagues (2012, 2014) found DF to show classic signs of optic 

ataxia. It is less clear why Hesse and colleagues’ data were so starkly at odds with the prior 

report of accurate peripheral pointing in DF (Milner, Dijkerman & Carey, 1999); but the 

brevity of that prior report of peripheral pointing precludes any meaningful comparison of the 

two datasets. Whitwell, Milner and Goodale (2014) recently suggested that DF’s dorsal 

stream atrophy, and by implication her visuomotor impairment, may have increased since the 

first scans, but this remains to be confirmed. 

Regardless of whether DF’s dorsal stream lesions have progressed over time, it has 

been noted that her visuomotor performance is not entirely normal, even in free vision, and 

even in the original experimental reports (Goodale et al., 1991; Milner et al., 1991; Goodale, 

Meenan et al., 1994). These classic reports were based on clear qualitative contrasts between 

DF and healthy controls, but statistical methods for finer-grained single-case analyses have 

since been developed (Crawford & Garthwaite, 2005, 2006; see McIntosh & Brooks, 2011, 

for an overview). Himmelbach, Boehme and Karnath (2012) applied these newer methods to 

the archived data from some of DF’s seminal studies, testing a larger sample of control 

subjects (n=20) on the original tasks used. They found that DF’s grip scaling for rectangular 

objects was within normal limits, but that she had significant visuomotor deficits when 

grasping irregular shapes, or posting a card through an oriented slot. Her visuomotor 

performance was still differentially preserved, relative to her performance on perceptual 

tasks. This re-analysis recasts the seminal observations of patient DF as showing a strong, 

rather than a classical, dissociation between perception and action in central vision 

(Crawford, Garthwaite, & Gray, 2003; see also Whitwell, Milner & Goodale, 2014). 
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It is also now well-recognised that DF encounters problems in a variety of complex 

visuomotor tasks, and that her control of even rudimentary actions may be supported by 

impoverished visual information (see Schenk & McIntosh, 2010, for a review). Schenk and 

McIntosh interpreted these patterns as evidence of an intimate ventral stream involvement in 

action, with the relative preservation of DF’s basic visuomotor skills attesting to an 

impressive robustness of the system in adapting to the loss of this contribution (see also 

Schenk, 2010). However, in light of recent data, it now seems possible that at least some of 

her visuomotor abnormalities in central vision may be directly due to dorsal stream damage. 

Re-inspection of kinematic data from DF, in a variety of reaching and grasping tasks 

reveals that, even when she performs a task well, she tends to be slow, with low peak 

velocities, and movement times up to twice as long as those of controls (Carey, Dijkerman & 

Milner, 2009; Dijkerman et al., 2009; Hesse et al., 2012; Dijkerman, Milner & Carey, 1996; 

Goodale et al., 1994; Marotta, Behrmann & Goodale, 1997; McIntosh et al., 2004; Mon-

Williams, McIntosh & Milner, 2001; Rice et al., 2006; Milner, Dijkerman & Carey, 1999). 

Rice et al. (2006) reported that patients DF and SB (another visual form agnosic patient with 

large bilateral lesions) moved much more slowly than controls in a perceptually-guided task, 

but that DF (not SB) was also slow in the direct reaching task. This suggests that DF’s 

slowing is not a generalised effect of brain damage, but may be a more specific consequence 

of, or compensation for, damage to the visuomotor network. In this respect, she is also similar 

to patients with optic ataxia, in whom relatively good visuomotor guidance in central vision 

is nonetheless associated with slowed execution (Gréa et al., 2002; Rice et al., 2008; 

Schindler et al., 2004). 

 A remarkable picture is thus building in which patient DF, the epitome of ventral 

stream perceptual problems, may also have optic ataxia, the cardinal dorsal stream disorder. 

Hesse and colleagues (2012, 2014) have so far shown that she misreaches and shows 
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impaired grip-scaling in peripheral vision, with much better performance in central vision. 

Here we expand these findings by analysing DF’s directional pointing errors to targets in free 

and peripheral vision, to test whether DF’s misreaching is significantly biased towards 

fixation as reported for optic ataxia (Blangero et al., 2010; Milner et al., 1999, 2003; Rossetti 

et al., 2005). In experiments 2 and 3 we investigated DF’s ability to perform on-line 

corrections of reaching in fixation-controlled and free-vision conditions. On-line correction is 

typically impaired in optic ataxia (Blangero et al., 2010; Gréa et al., 2002; McIntosh et al., 

2011; Pisella et al., 2000), and has been proposed by some as the most specific function of 

dorsal stream control (Pisella et al., 2000; Glover, 2003; Schenk & McIntosh, 2010).  

 

2. Experiment 1: Reaching to stationary targets in free vs. peripheral vision 

2.1. Methods  

2.1.1 Participants 

Patient DF: A right-handed female 56-year-old patient (DF), who after carbon monoxide 

poisoning in 1988 acquired visual form agnosia (Milner et al., 1991), participated in the 

experiment (tested at the University of Glasgow in 2010). Previous testing (Milner et al., 

1991; Humphrey et al., 1994) demonstrated that DF is severely impaired in visual shape, 

orientation and distance discriminations leading to poor visual object recognition, but shows 

preserved colour, luminance and texture perception (Milner et al., 1991; Milner & Goodale, 

1995; 2006). MRI scans of patient DF revealed large bilateral lesions in the lateral occipital-

cortex, but leaving V1 and fusiform gyrus largely intact, and a small lesion in the left 

posterior parietal cortex (James et al., 2003; but see introduction for a fuller discussion of 

dorsal stream involvement). An in-house computerized static perimetry test (up to 22º of 

eccentricity; Rossit et al., 2009) revealed that DF was able to detect visual stimuli above 

chance in the upper visual field, but similarly to previous studies (e.g. Hesse, Ball & Schenk, 
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2012, 2014; Bridge et al., 2013) showed a lower right quadrantanopia when tested below 11º 

of visual eccentricity. This finding is also consistent with the report of a lesion to the anterior 

portion of V1 in the left hemisphere (Milner et al., 1991; Bridge et al., 2013) 

Control group: Six age-matched right-handed healthy control participants (mean age: 

53.5 years, SD 8.3; age range: 45-63 years; 2 females) were tested. All participants had 

normal or corrected-to-normal visual acuity and no history of neurological problems. All 

experiments were approved by the local ethical committee and all participants (including 

patient DF) gave informed consent prior to the study. 

2.1.2. Apparatus and stimuli 

Targets and fixation were 7mm circles (0.7º of visual angle) back-projected (HITACHI CP-

X345 Multimedia LCD projector, refresh rate of 60Hz) onto a horizontal Perspex box (77cm 

width/97cm length/30cm height) via a reflection mirror (3mm thick, 60cm x 60cm). The box 

was placed on top of a wooden table at which the subjects were seated. The targets were red 

and presented at -20º, -15º, -10º, 0º, 10º, 15º and 20º of visual eccentricity. The fixation circle 

was green and placed 2.6º above the central target location (allowing all targets to be 

presented outside of DF’s scotoma). The room was slightly darkened so that the targets were 

clearly visible, but the participant’s hands were visible throughout the movement.  

 Pointing responses were recorded by sampling the 3D position of a magnetic marker, 

attached to the tip of the right index finger, at a rate of 108Hz, using an electro-magnetic 

motion-analysis system (Minibird, Ascension Technology Inc.). Experiments were 

programmed in LabVIEW (National Instruments). The electrooculogram (EOG) was 

continuously recorded from electrodes placed above and below the left eye (vertical EOG) 

and from electrodes placed on the left and right outer canthi (horizontal EOG) using a 

BIOSEMI Active-Two amplifier system. Two additional electrodes (Common Mode Sense 

[CMS] active electrodes and Driven Right Leg [Driven Right Leg] were place within a 
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standard BioSemi head cap [see www.biosemi/faq/cms&drl.htm for details]). The data were 

recorded at 2048 Hz.  

2.1.3. Procedure 

Participants sat in an adjustable chair and began each trial with their right index-finger resting 

on a start button located approximately 35 cm from the middle target and aligned with their 

sagittal midline. Two reaching conditions (separate blocks of periphery and free vision) were 

completed using the right index-finger. Block order was the same across participants so that 

controls performed the experiment in the same order as DF. In the first block, participants 

were asked to point to the target whilst maintaining fixation on the central light (peripheral 

vision). In the second block, participants were asked to point to the target but were allowed to 

move their eyes (free vision). Target onset was triggered by start button press and the target 

remained visible until the end of the trial. The green fixation circle was displayed 

continuously throughout the experiment. Each target was presented 6 times, in randomly-

shuffled order, resulting in a total of 42 trials per block (plus 5 practice trials). At the end of 

these tasks, calibration coordinates were obtained by continuous presentation of each target 

position, one by one, allowing the participants to adjust their terminal fingertip position until 

they felt that they had perfectly occluded the target. There were 3 calibration trials for each 

target and start position.  

After the reaching tasks, participants performed a perceptual target detection task (in 

peripheral vision only) using the same set-up. Each of the targets was presented 10 times, in 

randomly-shuffled order, and participants were asked to press the button upon target 

detection whist maintaining fixation. To control for response biases, 20 catch trials in which 

no target appeared were randomly intermingled. 

2.1.4. Data analysis 
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The EOG data were analysed using BESA (www.besa.de) and customized MATLAB 

scripts. The continuous data were band-pass filtered (0.01 Hz - 40 Hz). The EOG epoch 

started 200 ms before trial onset and lasted 2200 ms. The 200 ms prior to trial onset served as 

the baseline. Visual inspection of the epoched EOG data demonstrated target-related 

horizontal EOG activity in the free movement condition that was related to target location for 

the control subjects. For the fixation condition both controls and patient DF showed greatly 

reduced horizontal EOG activity. Thus, we are confident that participants were able to follow 

task instructions. Individual trials with clear target related horizontal EOG activity between 

trial onset and response execution within the fixation condition, were visually identified and 

removed from the subsequent movement data analysis. This resulted in the removal of 2% of 

trials for controls whereas no trials were removed for patient DF, as she was able to maintain 

fixation throughout. The remaining reaching data were filtered by a dual-pass through a 

second-order Butterworth filter with a cut-off frequency of 10 Hz, and analysed using 

customized software written in LabVIEW (National Instruments). For the reaching task we 

computed directional error (signed angular deviation of the movement endpoint relative to the 

ideal reach), and for the detection task the percentage correct and reaction time (RT).  

DF’s performance was compared to that of the controls using modified t-tests 

developed for single-case studies (Crawford & Garthwaite, 2002). The revised standardized 

difference test (RSDT; Crawford & Garthwaite, 2005) was used to compare between-task 

differences in DF and controls. One-tailed tests were used for tests in which there was an 

unambiguous directional prediction, but not when impaired performance could differ in either 

direction from controls. 
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2.2. Results 

In free vision, the reaches of patient DF had similar end-point coordinates to those of control 

participants (Fig. 1). Modified t-tests on directional error (Fig. 2) found no abnormality in DF 

at any target position (all two-tailed ps > 0.1). 

 

****************************** 

Figure 1 about here 

****************************** 

 

However, DF was severely impaired when reaching to targets in peripheral vision. 

There was less differentiation of target eccentricity in DF than in controls (Fig.1); she 

presented a bias towards the midline/fixation (Fig.1); she undershot target position (especially 

when reaching to rightward targets; Fig.1); and her errors increased dramatically with target 

eccentricity (Fig.2). Modified t-tests on directional error confirmed that, when compared to 

controls DF significantly undershot target positions (i.e., had a bias towards fixation) in the 

right visual field (20°: t = -11.3, two-tailed p < 0.001; 15°: t = -10.4, two-tailed p < 0.001; 

10°: t = 5.3, two-tailed p = 0.003) and for the -20° and -15° targets in the left visual field (-

20: t = 3.8, two-tailed p = 0.01; -15°: t = 2.9, two-tailed p = 0.03), though not for the -10° left 

target (t = 2.2, two-tailed p = 0.08). Her errors for the central (0°) target were well within 

normal limits (t = 0.5, two-tailed p = 0.61). 

 

****************************** 

Figure 2 about here 

****************************** 
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To test the apparent dissociation between free vision and peripheral reaching, we 

applied the RSDT, using directional error averaged over all target positions, but excluding the 

0° target. This confirmed that the difference in accuracy between free and peripheral reaching 

was significantly larger in DF than in controls fulfilling the criteria for a classical dissociation 

(mean difference DF = 3.6°; mean difference controls = 0.1°; t = 5.2, two-tailed p = 0.003).  

To investigate perceptual detection of targets in our stimulus set-up we tested DF and 

controls in an additional perceptual target detection task. The controls were at ceiling, being 

able to detect all targets (100% correct in both target present and target absent trials). Patient 

DF’s performance was also very good with 100% correct in target absent trials (i.e., no false 

positives) and when targets ware presented at -15°, -10°, 15° and 20° of eccentricity.  For -

20°, 0° and 10° targets her performance was 90% correct (i.e. she missed one trial per target 

eccentricity). However, DF took significantly longer to detected all target positions when 

compared to controls (-20°: t = 105.3, one-tailed p < 0.0001; -15°: t = 27.4, one-tailed p < 

0.0001; -10°: t = 6.2, one-tailed p = 0.0008; 0°: t = 39.1, one-tailed p < 0.0001; 10°: t = 6.5, 

one-tailed p = 0.0006; 15°: t = 3.8 , one-tailed p = 0.0006; 20°: t = 2.2, one-tailed p = 0.04; 

see Fig.2C). Nevertheless there was no obvious relationship between her ability to point to or 

perceptually detect targets in peripheral vision. In particular, and as can been seen by 

contrasting Figs.2B and 2C, while her pointing errors increased with target eccentricity, her 

RT did not (if anything, it seemed to decrease) and while she was perfectly accurate in 

pointing to the central (0°) target, she was significantly slow to detect it.  

 

2.3. Discussion 

In Experiment 1, we investigated how patient DF performed on the typical diagnostic task for 

optic ataxia of reaching in central and peripheral vision. Consistent with the reports of Hesse, 

Ball and Schenk (2012, 2014), she performed very well with free vision, but was dramatically 
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impaired for peripheral targets. The difference between her central and peripheral reaching 

errors met formal criteria for a classical dissociation. We thus replicate the key finding of 

Hesse, Ball & Schenk (2012, 2014), that DF exhibits the core diagnostic symptom of optic 

ataxia (Perenin & Vighetto, 1988). In addition we show that her errors follow the pattern 

typical of optic ataxia, being significantly deviated towards fixation, and increasing with 

target eccentricity (Blangero et al., 2010; Perenin & Vighetto, 1988; Milner et al., 1999; 

2003; Rossetti et al., 2005). Misreaching was present in both visual fields (if anything, more 

severely on the right), consistent with bilateral thinning of the parieto-occipital cortex (Bridge 

et al., 2013), the cardinal area associated with this symptom (Karnath & Perenin, 2005). Our 

test session preceded that of Hesse, Ball & Schenk (2012), so we can confirm that this 

visuomotor impairment was already present in 2010. It may possibly have been present, but 

undetected, much earlier, given the mention of bilateral parieto-occipital lesions in a very 

early case report of patient DF (Milner et al., 1991). 

  DF was also impaired in our target detection task, showing abnormally slow RTs for 

all locations but one (the rightmost), which is hard to interpret. On the one hand, DF has 

profound perceptual problems, which might make the pattern unremarkable, although agnosic 

patients should be able to perform detection well. On the other hand, patients with optic 

ataxia also have deficits in detecting visual targets, especially in their ataxic field (Striemer et 

al., 2007, 2009; Pisella et al., 2007). As found for DF, slowed detection may not modulate 

with eccentricity in the same way as reaching errors do (Striemer et al., 2009). Thus DF’s 

slowed perceptual detection may depend on her extensive damage to either or both the 

ventral and dorsal visual streams.  

Misreaching to peripheral visual targets is the classic diagnostic sign of optic ataxia, 

but another common feature of the condition – when it has been tested – is an impaired 

ability to quickly correct reaching movements on-line (Blangero et al., 2010; Gréa et al., 
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2002; McIntosh et al., 2011; Pisella et al., 2000). This has typically been studied via ‘double-

step’ reaching tasks, in which the target is displaced abruptly to a new location once the reach 

is underway. Healthy participants update their movement rapidly to track the displacement, 

reaccelerating within ~110 ms, and taking a distinguishable spatial path by about 200 ms 

(Brenner & Smeets 1997; Castiello, Paulignan & Jeannerod, 1991). This response is 

automatic, occurring without instruction (Day & Lyon, 2000; Pisella et al., 2000), without 

tapping cognitive resources (McIntosh, Mulroue & Brockmole, 2010), and without any 

necessary awareness of the target jump or the compensatory correction (Goodale, Pelisson & 

Prablanc, 1986; Pelisson et al. 1986). The fast automatic corrections depend on dorsal stream 

integrity, and are impaired in optic ataxia (although slower, conscious corrections may still be 

made; Pisella et al., 2000; Gréa et al., 2002; Blangero et al., 2010; McIntosh et al., 2011). 

Thus, in Experiment 2, we examined DF’s on-line corrections in a double-step reaching task, 

with controlled fixation, previously used for the single-case study of a patient (IG) with 

bilateral optic ataxia (McIntosh et al., 2011). 

 

3. Experiment 2: On-line reaching correction, with fixation controlled 

3.1. Methods 

The methods used for DF differed in one major design aspect from those used in McIntosh et 

al. (2011), having a reduced number of experimental conditions to focus on the question of 

interest, and in some more superficial details of apparatus used, as the original experiment, 

conducted at the University of Lyon, had to be recreated at the University of Edinburgh1. The 

                                                           
1  The apparatus used for DF differed from that used in the experiment of McIntosh et al 

(2011) in the following respects: stimuli were controlled via LabVIEW rather than 

Cambridge Research Systems Visual Stimulus Generator; stimuli were presented on a 17” 

LCD flatscreen, rather than a 21” CRT monitor (stimulus dimensions were unchanged); 
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methods reported here apply to the testing of patient DF, with methodological differences 

from the original study noted. The control data come from the original study reported by 

McIntosh et al (2011), as the methods were closely comparable. 

3.1.1. Participants 

Patient DF who suffers from visual form agnosia (see section 2.1.1 for details) performed 

this experiment in 2008 (she was 54 years old at the time). 

Control group: Eleven right-handed healthy controls were also tested (mean age: 

35.1, SD 9.2; age range: 25–52 years; 8 females). Because DF was at the upper end of the 

control range of ages, age was used as a covariate in comparing DF’s performance to that of 

controls (see 3.1.4. Data Analysis). All control participants had normal or corrected to normal 

visual acuity with no history of neurological conditions. All methods were approved by the 

relevant local ethical committee and all participants (including patient DF) gave informed 

verbal consent prior to the study.  

3.1.2. Apparatus and stimuli 

DF sat in darkness, 420 mm in front of a 17″ CRT monitor (refresh rate 60 Hz), with her head 

immobilised in a chin-rest. Throughout each trial, she fixated a 6 mm (0.8° visual angle) grey 

cross, at the screen centre. Targets were 12.5 mm diameter (1.7° visual angle) white circles 

which appeared either centrally or 65 mm (8.8° visual angle – just outside of paracentral 

vision in near peripheral vision) to the left or right in line with fixation and thus outside of 

DF’s scotoma. Reaching responses were recorded via an Optotrack Certus system (Northern 

Digital Inc.), which sampled the 3D position of an infrared emitting diode, attached to the 

                                                                                                                                                                                     

EOG, rather than a video-based eye-tracker, was used to monitor fixation; an Optotrak Certus 

rather than Optotrak 3020 system was used for hand movement recording; and a simple 

finger tap rather than a button press was used to respond in the perceptual discrimination task. 
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nail of the right index finger, at 200 Hz. In the perceptual task, an infrared emitting diode was 

attached to both the left and the right index fingernail, with finger position sampled at 200 

Hz. Throughout all trials in both tasks, horizontal eye movements were monitored using 

EOG, with a passive electrode placed on the outer canthus of each eye, and a reference 

electrode on the forehead. EOG voltage was sampled at 500 Hz, with sampling time-locked 

to hand movement recording via the Optotrak Data Acquisition Unit (ODAU). 

3.1.3. Procedure2 

DF performed two tasks, reaching and perceptual discrimination, with reaching first. Prior to 

each task, a 20 second EOG calibration recording was made in which DF was required to 

follow a fixation cross, which jumped sequentially, approximately every 1-2 seconds between 

the three target positions. 

In the reaching task, DF pressed a button in front of her, with her right index finger, 

and target 1 appeared at the screen centre. She was then required, in her own time, to initiate 

a fast forward-and-upward reach towards it (straight line distance 500 mm). Button release 

triggered the replacement of target 1 by target 2, which was identical to target 1, and either 

located centrally (static trials) or 65 mm to the left or right (jump trials). A pacing beep, 450 

ms after button release, encouraged DF to make fast movements, as she was instructed to try 

                                                           
2
 McIntosh et al (2011) conducted the reaching and perceptual tasks under three different 

blocked fixation conditions, in order to investigate some specific aspects of visual 

responsiveness in optic ataxia. Because these extended questions were of less relevance to 

DF, the present experiment used the central fixation blocks only. DF performed three blocks 

of the reaching task with central fixation, whereas controls performed two blocks in each of 

three fixation conditions. DF performed two blocks of the perceptual discrimination task with 

central fixation, whereas controls performed two blocks in each of three fixation conditions. 
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to complete the movement by the time of the beep. DF performed three blocks of 60 trials (40 

static, 10 jump left, 10 jump right, pseudo-randomly ordered). 

The perceptual discrimination task used the same set-up, except that DF’s right and 

left index fingers were raised slightly above the table-top in front of her. The experimenter 

initiated onset of target 1, which was replaced by target 2 after 500 ms. DF discriminated the 

direction of the target jumps by tapping the table with the corresponding finger as soon as 

possible, withholding responses on static trials. Trials timed out after 2000 ms. There were 

two blocks of 45 trials (15 static, 15 jump left, 15 jump right, pseudo-randomly ordered). 

3.1.4. Data analysis  

For monitoring of eye position, the raw EOG voltage data were filtered by a dual-pass 

through a second-order Butterworth filter with a cut-off frequency of 10Hz. The velocity of 

the EOG signal was computed for each sample. A threshold for saccade identification was 

determined manually from the calibration recording, as the smallest velocity value that 

cleanly separated saccades between target locations from inter-saccadic EOG velocity 

variation. In experimental trials, central fixation was deemed to have been broken on any trial 

in which the velocity exceeded this threshold value, with saccade onset time corresponding to 

the frame that the threshold was first exceeded. Fourteen trials (11 static and three jump 

trials) were removed for the reaching task, because a saccade was initiated before the end of 

the reach; eleven of these were in the first block, indicating that DF gained better control over 

her fixation as the task progressed. Five additional trials were lost to recording errors. The 

loss of 19 trials overall for DF was more than offset by the fact that she performed an extra 

block of trials (relative to controls), leaving 105 static, 29 jump left and 28 jump right trials 

for analysis. In the perceptual task, no saccades were detected that preceded the manual 

response, so no trials were removed. 
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Kinematic data from reaching movements were filtered by a dual pass through a 

Butterworth filter with a cut-off of 10 Hz. Movement onset was determined using a velocity 

threshold of 100 mm s−1, and movement offset using a threshold of 50 mm s−1. The analysis 

of the spatial trajectory was performed by projecting the hand path onto the plane intersecting 

the start button and the three target locations, with its origin at the start button. A straight path 

from start button to the central target defined increasing depth displacement. Leftward lateral 

displacement was signed negatively, and rightward positively. 

The analysis of on-line corrections in individual jump trials was based upon 

deviations of the hand path from the average spatial path of the hand on static trials, using a 

bandwidth based upon the movement variability of control participants. First, the spatial 

trajectories for all static trials were normalised to 1 mm increments along the depth axis. 

Second, for each participant, the average lateral coordinate and its standard deviation were 

calculated at each depth increment. Third, the average standard deviation was calculated 

across all control participants at each depth increment, and these were used to define standard 

cut-offs for all participants, including DF, for the purposes of classifying corrections in jump 

trials. Standard cut-offs were used so that the sensitivity of the analysis of corrections would 

be minimally influenced by individual differences in movement variability. At each depth 

increment, cut-offs were set at 2.81 average standard deviations either side of that 

participant's average hand path. For each jump trial, in each time frame, the movement was 

classed as corrected if it fell beyond the corresponding cut-off in the direction of the jump, 

being otherwise classed as uncorrected. Each comparison thus approximates a one-tailed 

comparison at alpha ∼ 0.0025, matching that applied by McIntosh et al (2011). The 

comparison made for the final frame of the movement defined the terminal correction status 

for each jump trial. 
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For the reaching task we extracted correction time (for corrected trials only) and 

directional error for all trial types and compiled a temporal profile of current percentage of 

corrections for left and right target shifts. We did not analyse RT for the reaching task of this 

experiment because here participants were instructed to release a button at their own pace 

with no speed RT requirement. For the perceptual task, percentage correct and RT were 

computed for left and right jumps. DF’s performance was compared to that of the controls, 

with age-entered as a covariate, using Bayesian tests for deficit in the presence of covariates 

(Crawford, Garthwaite and Ryan, 2011). One-tailed tests were used for tests in which there 

was an unambiguous directional prediction, but not when impaired performance could differ 

in either direction from controls. 

 

3.2. Results 

DF presented a similar number of terminal corrections to controls with 79% of movements 

corrected to left jumps and 82% to right target jumps (left jumps: control mean = 86%, SD = 

35%; right jumps: control mean = 92%, SD = 28%). However, her movement time was 

almost double that of controls for static trials (DF = 809.7; controls mean = 462.7, SD = 70.4; 

Bayesian one-tailed p = 0.0005, Z-CCC = 6.29), for left jumps (DF = 862.8; controls mean = 

502.3, SD = 71.3; Bayesian one-tailed p = 0.0004, Z-CCC = 6.38), and for right jumps (DF = 

733.2; controls mean = 443.7, SD = 66.3; Bayesian one-tailed p = 0.001, Z-CCC = 5.48). In 

fact, during data collection we kept encouraging DF to move faster, but this was the 

maximum speed she could achieve. 

Remarkably DF was severely impaired in her ability to make fast trajectory 

corrections on jump trials whilst maintaining fixation. None of DF’s corrections emerged 

within 400 ms after the target jump, whilst the vast majority of corrections in controls were 

visible within 250-300 ms (Fig. 3A and B). Her mean correction time was abnormally long 
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(Figs. 3C) for both left and right target jumps (left: Bayesian one-tailed p = 0.00008, Z-CCC 

= 8.15; right: Bayesian one-tailed p = 0.0001, Z-CCC = 7.60). To assess whether DF’s 

slowed correction time was a consequence of general slowing in overall performance we ran 

an additional analysis comparing DF and controls with both age and movement time (to the 

central static target) entered as co-variates. This revealed that DF was still significantly slow 

at performing corrections to left target jumps when compared to controls and her correction 

time to right jumps was also slow but this not reach significance (left: Bayesian one-tailed p 

= 0.04, Z-CCC = 5.21; right: Bayesian one-tailed p = 0.067, Z-CCC = 4.37).   

As displayed in Fig 4, in contrast to the controls who amended their hand trajectory 

progressively and smoothly in response to the majority of jump trials, DF very often 

completed an initially planned reach to the central location before executing a second 

movement to the final target location (this pattern is especially pronounced for left jumps). 

The successful corrections that she made tended to be less accurate than those of controls, but 

this difference was not significant (left: DF = 2.78°; controls mean = 0.39°, SD = 1.04°; 

Bayesian two-tailed p = 0.38, Z-CCC = 1.19; right: DF = -2.65°; controls mean = -0.17°, SD 

= 0.74°; Bayesian two-tailed p = 0.07, Z-CCC = -2.73). Her end-point accuracy was normal 

for static trials (DF = 0.01°; controls mean = 0.05°, SD = 0.2°; Bayesian two-tailed p = 0.80, 

Z-CCC = 0.35).  

In the perceptual task, DF was able to correctly discriminate the direction of the target 

jump when it moved rightwards (DF = 97%; controls mean = 97.2%, SD = 3.7%; Bayesian 

one-tailed p = 0.17, Z-CCC = 1.29), but missed a significant number of left jumps (DF = 

90%; controls mean = 98.1%, SD = 2.0%; Bayesian one-tailed p = 0.01, Z-CCC = -3.60). In 

addition, DF showed abnormally slow perceptual discrimination of target jumps in either 

direction (left: Bayesian one-tailed p = 0.008, Z-CCC = 3.88; right: Bayesian one-tailed p = 

0.003, Z-CCC = 2.86) (Fig.3E).  
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****************************** 

Figure 3 and 4 about here 

****************************** 

 

3.3. Discussion 

For the first time, we investigated DF’s ability to react to a sudden change in target position 

during reaching. We found that she is dramatically unable to make fast corrections to target 

jumps to extra-foveal vision, in either direction. She did eventually correct on a majority of 

occasions, but her correction time was more than twice that of controls. She can thus guide 

movements to targets in central vision quite well, but is impaired at quickly updating those 

movements when the target position changes.  

 DF was also abnormally slow in a perceptual version of the double-step task, matched 

for stimulus events. Unlike the simple target detection of Experiment 1, the present 

perceptual task required discrimination of the direction of the target jump. In reaching and 

detection tasks alike, DF was relatively more slowed in responding to left than to right target 

jumps, which would not exclude a common functional basis. As in Experiment 1, then, it is 

possible that DF’s perceptual, as well as her visuomotor abnormalities, derive from her dorsal 

stream lesions. These data also challenge the view that DF’s perceptual performance in 

peripheral vision should always be worse than her visuomotor control (e.g. Whitwell, Milner 

& Goodale, 2014). 

 Here, we have used a particularly stringent version of the double-step reaching task, 

in which fixation must be maintained at the original target location. Although normal 

participants do make rapid corrections in this task while holding the eyes still, the more 

natural inclination is to follow the target jump with the eyes slightly leading the hand 
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(Blangero et al., 2008). Blangero and colleagues indeed suggested that one patient (CF) with 

optic ataxia was able to make trajectory correction only after he had moved his eyes. It should 

be noted that the requirement to fixate is not a necessary condition to expose an on-line 

correction deficit. Blangero and colleagues (2008) measured but did not constrain eye 

movements, and the original demonstrations of an on-line correction deficit in patient IG 

were made with free vision (Gréa et al., 2002; Pisella et al., 2000). Thus it is interesting to 

test DF’s on-line correction in this more naturalistic way, with no requirement to hold 

fixation.  

The task we employed here was clearly highly demanding for DF, as she not only 

struggled to make fast on-line corrections but was also unable to comply with the basic speed 

requirement for reaching, suggesting she found the task extremely challenging. In 

Experiment 3, we re-tested DF’s on-line correction ability, allowing her to move her eyes and 

put less emphasis on speed requirements. Furthermore, we asked whether she makes 

trajectory corrections automatically, when the task does not require it. For this purpose, we 

used the STOP task of Pisella et al (2000), which instructs the participant to stop an ongoing 

reach as soon as they see the target jump. Healthy controls show rapid, uninstructed, 

corrections toward the jumped location, which precede the slower, voluntary STOP response 

(Pisella et al., 2000; McIntosh et al., 2011; Rossit et al., 2009; 2012). Pisella et al., however, 

found that patient IG made no uninstructed corrections, bolstering the idea that an automatic 

visuomotor feedback loop is switched off in optic ataxia. Our goal was thus to establish 

whether the only corrections DF can make are slow and voluntary or whether she does make 

automatic corrections but these are retarded. 

 

4. Experiment 3: On-line reaching correction, in free vision 

4.1. Methods 
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4.1.1. Participants 

Patient DF who suffers from visual form agnosia (see section 2.1.1 for details) performed 

this experiment on the same day and place as Experiment 1 (she was 56 at the time of 

testing).  

Control group: Six right-handed and age-matched control participants (mean age: 

61.7, SD 5.2; age range: 55-68 years; 4 females) were tested (none of them were tested in 

Experiment 1). All participants had normal or corrected to normal visual acuity with no 

history of neurological conditions. All experiments were approved by the local ethical 

committee and all participants (including patient DF) gave informed consent prior to the 

study. 

4.1.2. Apparatus and stimuli 

The set-up, motion-tracking recordings and reaching targets were the same as in Experiment 

1 (see section 2.1.2 for details), except that the following positions were used: −4 cm (left 

hemispace) or + 4cm (right hemispace) with respect to the central target (0) located at 40 cm 

distance directly in front of the start trigger. Throughout this experiment eye movements were 

unrestricted.  

4.1.3. Procedure 

The paradigm consisted of location-go vs. location-stop conditions, previously used with a 

large sample of healthy and brain-damaged participants (Rossit et al., 2008, 2012). At the 

start of each trial, the participant’s right index finger rested on the start button, aligned with 

the subject’s sagittal midline. In the location-go condition, participants were asked to point to 

a target, which could jump unexpectedly to the right or left side of its initial central position 

(30% of trials). Participants were instructed to point to the target, even if it jumped to a new 

location. In the location-stop condition, participants were instructed to stop their movement 

and return to the start position, as soon as possible, if they saw the target jump. On each trial, 
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participants pressed the start trigger to initiate central target presentation. One second later, a 

500 ms tone (800 Hz) cued participants to start the reach. For both conditions, the target jump 

was triggered by release of the start trigger, i.e., at movement onset. One second after the 

release of the start trigger, the target disappeared and another tone announced the end of the 

trial. Participants were instructed to perform their movements as quickly and as accurately as 

possible, with their right index finger.  

The two conditions (location-go; location-stop) were given in separate blocks and 

block order was the same across participants so that controls performed the experiment in the 

same order as DF (location-go followed by location-stop). Each block contained 18 practice 

trials (6 for each target position) and 200 experimental trials. To minimize anticipatory 

trajectory adjustments, target positions were unperturbed in 70% of experimental trials in 

each block (i.e., N = 140 trials). For the perturbed trials in each block (i.e., N = 60 trials), the 

target jumped in equal proportion to the right (i.e., N = 30 trials) or left (i.e., N = 30 trials) of 

the central target, as soon as the participant released the start button. Trial order within blocks 

was randomly shuffled. At the end of the experiment, calibration coordinates were obtained 

by continuous presentation of each target position, one by one, allowing the subjects to adjust 

their terminal fingertip position until they felt that they had perfectly occluded the target. 

There were three calibration trials per target and three for the start position. 

4.1.4 Data analysis 

The data analysis routine was the same as in Rossit et al. (2012). The raw data from the 

marker were filtered by a dual-pass through a second-order Butterworth filter with a cut-off 

frequency of 10 Hz, and analysed using customized software written in the LabVIEW 

programming environment (National Instruments).  

For both location go and stop conditions, RT (the time taken to initiate a reach 

overall) was extracted and collapsed for all target positions (since in this task they are 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

26 
 

performing a switch release response button in response to a middle target for all conditions). 

For the location-go condition, movement offset was defined as the final frame before which 

forward (Y) velocity fell below 50 mm/s. For the location-stop condition, the end of the 

movement was identified as the frame before the velocity in the y-axis went negative (i.e., 

pullback) provided that velocity fell below -100 mm/s within 50 ms of the first becoming 

negative. The presence of corrections in each perturbed trial was determined on spatial 

grounds, by comparison of the XY path of the movement (trajectory in the plane of the box 

surface) against the distribution of XY paths in the corresponding unperturbed trials. This 

analysis was conducted using the filtered XY data for each participant separately. First, XY 

trajectories for all movements were normalized using linear interpolation to estimate the 

horizontal (X) coordinate of the marker at standardized 1 mm increments along the depth (Y) 

axis. Second, the unperturbed trials mean x coordinate and its standard deviation were 

calculated at each depth increment. Next, for each normalized perturbed trajectory, the 

horizontal coordinate at each of these depth coordinates was classified as ‘corrected’ if it fell 

at least 2.81 standard deviations from the mean of the corresponding unperturbed trials in the 

direction of the target perturbation (one-tailed alpha level of 0.0025 per comparison, 

matching the one used in McIntosh et al., 2011 and Rossit et al., 2012), being otherwise 

classified as ‘uncorrected’. The depth coordinates at which transitions between uncorrected 

and corrected states occurred were then converted to times of transition by referencing the 

filtered XY data for that trial and using linear interpolation to estimate the times at which the 

marker occupied those depth coordinates.  

For corrected trials, and based on the above criteria, we defined correction time for 

both location-go and location-stop conditions as the time (in ms) at which the marker was 

first detected to be in a corrected position. For successfully corrected trials as well as for non-

perturbed trials in the location-go condition we also extracted the directional error (defined as 
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the signed angular deviation of the movement endpoint relative to the ideal reach [obtained 

from calibration trials]). For the location-stop condition, trials were classified as successful 

stops if a velocity reversal in the y-axis was detected and this was used to compute stop status 

(defined as the percentage of successful stops) and stop time (defined as the time between 

movement onset and the time it took the subject to stop the movement). In addition, for both 

conditions, a temporal profile of current percentage of corrections was compiled for left and 

right target shifts. Time from movement onset was divided into 10 ms bins. For each time 

bin, the number of perturbed trials in which the marker was in a corrected position at the end 

of that bin was expressed as a proportion of the total number of movements in that condition 

that were still ongoing at the end of that time bin. The resultant profile thus recorded the 

current percentage of ongoing movements that were in a corrected position at each time bin. 

The patient’s performance was compared to that of the controls using modified t-tests 

developed for single-case studies (Crawford & Garthwaite, 2002). Moreover the RSDT 

(Crawford & Garthwaite, 2005) was used to compare the left-right asymmetry in DF vs. 

controls and to compare differences between tasks in DF vs. controls. One-tailed tests were 

used for tests in which there was an unambiguous directional prediction, but not were 

impaired performance could differ in either direction from controls. 

 

4.2. Results 

For all conditions DF’s overall reaction time (ms) was comparable to that of controls 

(location go: DF = 251.6; controls mean = 247.3, SD = 38.0, t = 0.10, two-tailed p = 0.92; 

location-stop: DF = 324.9; controls mean = 276.1, SD = 54.2, t = 0.83, two-tailed p = 0.44). 

In the location-go condition, patient DF ultimately achieved 100% of corrections in 

response to both right and left target jumps but her movement time was long (Figs.5A and 

5B). In particular, and similarly to Experiment 2, DF’s movement time (ms) was considerably 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

28 
 

longer than that of controls for static trials (DF = 602.0; controls mean = 461.5, SD = 47.5, t 

= 2.7, one-tailed p = 0.02), for left jumps (DF = 711.7; controls mean = 535.4, SD = 28.2, t = 

5.2, one-tailed p = 0.0017), and for right jumps (DF = 607.7; controls mean = 508.9, SD = 

28.8, t = 3.2, one-tailed p = 0.01). Moreover, as in Experiment 2, her correction time occurred 

significantly later than that of controls for both left (t = 5.1, one-tailed p = 0.002; Figs.5A and 

5C) and right target jumps (t = 3.2, one-tailed p = 0.01; Figs. 5B and 5C). As in experiment 2, 

to assess whether DF’s slowed correction time was a consequence of general slowing in 

overall performance we ran an additional analysis comparing DF and controls movement 

time (to the central static target) entered as co-variate. This revealed that DF was still 

significantly slow at performing corrections to left and right target jumps when compared to 

controls even when slow movement time was accounted for (left: Bayesian one-tailed p = 

0.02, Z-CCC = 5.96; right: Bayesian one-tailed p = 0.02, Z-CCC = 5.42).   

As can be seen in Figure 6, DF's corrections typically involved a continuous forward 

movement deviating smoothly towards the jump, similar to those of controls. DF was as 

accurate as controls in her reaches to left and right target jumps as well as in the static trials 

condition (static trials: DF = -0.1°; mean controls = -0.1°, SD = 0.2°; t = 0.2, two-tailed p = 

0.8; left jumps: DF = 0.2°; mean controls = -0.1°, SD = 0.2°; t = 1.4, two-tailed p = 0.2; right 

jumps: DF = 0.9°; mean controls = -0.1°, SD = 0.6°; t = 1.7, two-tailed p = 0.1). 

 

****************************** 

Figure 5 and 6 about here 

****************************** 

  

In the location-stop condition, despite being instructed to stop and pull back in 

response to a target jump all participants (including patient DF) still corrected their 
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movements towards right and left jumps in the majority of jump trials (Fig. 7A and B). 

However, and similarly to the location-go condition, DF was significantly slower than 

controls in her correction time to both left (t = 16.5, one-tailed p = 0.00001; Fig. 7C) and 

right target jumps (t = 3.7, one-tailed p = 0.007; Fig. 7C). Moreover, the RSDT showed that 

the difference between DF’s correction time to left vs. right target jumps was significantly 

larger than that of controls (mean difference DF = 345.3 ms; mean difference controls = 49.0 

ms; t = 13.9, one-tailed p = 0.00002), indicating that she had abnormally long correction time 

to left jumps (Fig. 7C). 

Nevertheless, despite the significant slowing of her on-line corrections, DF was able 

to stop her movements in response to target jumps in a similar way to controls (left jumps: t = 

0.2, one-tailed p = 0.4; right jumps: t = -0.4, one-tailed p = 0.4). In particular, she stopped her 

movements in 90% of left jump trials (mean controls = 83%, SD = 28%) and in 82% of right 

jump trials (mean controls = 89%, SD = 19%) and her stop time was within the normal range 

for both sides of space (left jumps: DF = 522.8 ms, mean controls = 425.0 ms, SD controls = 

87.8 ms, t = 1.0, one-tailed p = 0.2; right jumps: DF = 482.3 ms, mean controls = 402.2 ms, 

SD controls = 74.0 ms, t = 1.0, one-tailed p = 0.2) with no significant left-right asymmetry 

(RSDT t = 0.08, one-tailed p = 0.5).   

 

****************************** 

Figure 7 about here 

****************************** 

 

4.3. Discussion 

This experiment investigated DF’s ability to perform on-line corrections in response to target 

jumps in the less restricted condition of free vision and in a less speed-demanding task than 
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Experiment 2. In addition we also assessed her ‘automatic pilot’ for the hand using the STOP 

task of Pisella et al (2000). Despite the relaxation of the fixation and speed requirements, 

DF’s on-line corrections to left and right target jumps were still abnormally slow when 

compared to the controls. This constitutes the first demonstration that, similarly to optic 

ataxia patients, DF’s fast on-line control is markedly impaired even when eye movements are 

permitted (Pisella et al., 2000; Gréa et al., 2002).  

However, unlike what has been reported in optic ataxic patient IG (Pisella et al., 

2000), DF still produced automatic reaching corrections in the majority of jump trials when 

instructed instead to interrupt her movements. This finding suggests that the ‘automatic pilot’ 

for the hand may be present in DF, since corrections emerge when not specifically instructed. 

However, DF’s uninstructed corrections were significantly slower than controls, indicating 

that her ‘automatic pilot’ for the hand is not functionally intact. We thus confirm that, in 

addition to misreaching and impaired grip scaling (Hesse, Ball & Schenk, 2012), DF has a 

further characteristic symptom of optic ataxia: a very slow ‘automatic pilot’ of the hand 

(Pisella et al., 2000). 

It could be argued that DF’s deficits in online correction are due to an overall slowing 

as her movement time was also longer than that of controls. However, even when we used 

movement time as a co-variate, in both experiments 2 and 3, her correction time was still 

significantly late. In line with this, her reaction time for reaching in experiment 3 was within 

normal range suggesting that her slowed reaction is specific to online control. DF could also 

voluntarily stop her movement in response to the target jumps as quickly as controls 

suggesting that her deficits are also not simply explained by a general delay in visuomotor 

processing. This does not contradict the findings of impaired perceptual performance in 

Experiment 2’s perceptual task, since for that task DF not only had to detect the jump but also 

discriminate its direction.  
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5. General Discussion 

The present data question the long-standing assumption that DF’s dorsal visual stream 

is functionally intact and that her on-line visuomotor control is unimpaired (Milner et al., 

1991; Goodale, Milner, Jakobson & Carey, 1991; Goodale, Meenan et al., 1994; James et al., 

2003; Whitwell, Milner & Goodale, 2014). Instead our data, along with those of Hesse, Ball 

and Schenk (2012, 2014), indicate that, in addition to visual form agnosia, DF also has 

visuomotor symptoms of optic ataxia. We confirm earlier reports that DF is impaired in 

peripheral (but not central) reaching, the typical diagnostic task for optic ataxia (Hesse, Ball 

& Schenk, 2012, 2014). Moreover, and for the first time, we find that DF also presents 

significant deficits in the fast on-line control of reaching, which is another common feature of 

patients with optic ataxia (McIntosh et al., 2011; Pisella et al., 2000; Rossetti, Pisella & 

Vighetto, 2003; Gréa et al., 2002; Blangero et al., 2008). This deficit was most severe when 

DF had to maintain central fixation, so could not acquire the displaced target with her eyes to 

guide her hand, yet she was also extremely slow to respond to target displacements even 

when eye movements were unconstrained. In fact, DF’s hand path trajectory for jump trials in 

fixation-controlled conditions is also similar to that seen in patients with optic ataxia who like 

DF complete two distinct movements: a first one toward the initial target location and a 

second one toward the final target location (Gréa et al., 2002). 

We would suggest that, given the clear correspondence to established patterns of optic 

ataxia, the most likely explanation for DF’s bilateral visuomotor problems on these tasks is 

that SPOC is neither anatomically nor functionally intact in either of her hemispheres (Milner 

et al., 1991; James et al., 2003; Bridge et al., 2013). In line with this, DF’s peripheral 

reaching performance, with increasing errors towards fixation at larger target eccentricities, is 

not only reminiscent of optic ataxia, but is also akin to that of healthy participants who have 

undergone rTMS to SPOC (Vesia et al., 2010; Ciavarro et al., 2013). Moreover, the same 
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SPOC regions that are damaged in patients with optic ataxia (Karnath & Perenin, 2005), have 

been shown to be activated in healthy participants during reaching, especially towards 

peripheral targets (Prado et al., 2005; Martin, Karnath & Himmelbach, 2015). Similarly, 

monkey neurophysiology has shown that neurons in V6A, an area in the macaque thought to 

correspond to human SPOC, are particularly sensitive to arm movements directed to non-

foveated objects (Marzocchi et al., 2008), are modulated by gaze position (Galletti, Battaglini 

& Fattori, 1995) and, when inactivated, lead to misreaching to peripheral targets (Hwang et 

al., 2012). Moreover, inactivation, neuroimaging and neurophysiological studies in both 

human and non-human primates have also implicated the posterior parietal cortex in on-line 

corrections of hand movements (Desmurget et al., 1999, 2001; Diedrichesen et al., 2005; 

Reichenbach et al., 2011; Tunik, Frey & Grafton, 2005; Tunik et al., 2007;  Battaglia-Mayer 

et al., 2013, 2014; Archambault, Caminiti & Battaglia-Mayer, 2009;  Archambault et al., 

2015; Gaveau et al., 2014; Glover, Miall & Rushworth, 2005; Rice, Tunik & Grafton, 2006; 

Rice et al., 2007; Della-Maggiore et al., 2004; Rossit et al., 2012).  

DF was also impaired when detecting peripheral targets perceptually and when 

discriminating jump direction. It could thus be argued that DF’s deficits in peripheral 

reaching to static and jumping targets may be a consequence of her perceptual impairments 

rather than visuomotor symptoms per se. However, it has recently become apparent that 

patients with optic ataxia – without ventral stream involvement - show similar perceptual 

deficits, which may reflect impaired orienting of attention to optic ataxic fields (Striemer et 

al., 2007, 2009; Pisella et al., 2007; McIntosh et al., 2011). Moreover, neurophysiological 

recordings in the monkey have shown that attentional and reach activity are closely related in 

area V6A (Galletti et al., 2010) and, that rTMS over human SPOC selectively impairs 

attentional orienting in both reaching and attentional tasks (Ciavarro et al., 2013). 

Furthermore, in Experiment 3, DF had a significant asymmetry in correction time when 
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compared to controls with severe slowing for left jumps specifically. Similarly, we found that 

her performance was also asymmetric in the perceptual discrimination task in Experiment 2. 

DF’s asymmetrical pattern is reminiscent of the slow correction times for left jumps we have 

found in patients with left visual neglect after right temporo-parietal strokes (Rossit et al., 

2012). Thus it could be that DF’s lesions also cause a deficit in our perceptual tasks due to a 

problem in attention orienting which is more severe for the left side of space, but this remains 

to be tested. Interestingly, DF’s reaction times for reaching were not significantly slower than 

controls indicating that her deficit in RT may be specific to our perceptual tasks and is not 

just a consequence of a general slowing associated with aging and/or lesion volume. 

The present findings, and those of Hesse et al (2012, 2014), are at odds with a 

previous report of spared peripheral reaching performance in DF (Milner et al., 1999). It has 

been suggested that DF’s lesion in the dorsal stream may have increased since her first scans 

(Whitwell, Milner & Goodale, 2014) thus explaining why only now she is found to be 

impaired in peripheral reaching. In any event, given the pivotal role that the putative 

dissociation between optic ataxia and visual form agnosia has played in supporting the 

perception-action model, it is important to consider what implications these findings have for 

that dissociation, for the model, and for the testing of DF herself.  

We conclude that DF, one of the cornerstones of the perception and action model, 

should no longer be considered a pure visual form agnosia patient with a relatively spared 

dorsal visual stream. In particular, we can no longer assume that DF’s dorsal visual stream is 

intact and that she is spared in visuomotor control tasks, as she also presents clear signs of 

optic ataxia. This highlights how correct Rossetti, Pisella and Vighetto (2003) and Pisella et 

al. (2006) were to point out the lack of parallel testing of optic ataxia and visual form 

agnosia. However we would argue that the finding that DF has optic ataxia does not 

necessarily exclude the possible existence of a dissociation between visual form agnosia and 
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optic ataxia, in contrast to what has been suggested by Hesse et al. (2012, 2014). Instead we 

simply suggest that the dissociation has not actually been properly tested and that her 

concomitant optic ataxia makes her an inappropriate participant for testing dissociations 

between optic ataxia and visual form agnosia. In other words, DF can no longer be 

considered as an appropriate single-case model for the dissociation of visual form agnosia 

from optic ataxia and for testing the neural basis of perception and action dissociations. 

These new revelations have significant implications for previous studies of patient DF 

(including our own) which have attributed her deficits to ventral stream damage and, thus 

their conclusions should be revisited to acknowledge a dorsal involvement as well. It is also 

important to admit that attributing certain symptoms to lesion location is very difficult in 

patient DF as she presents large ventral and dorsal visual stream lesions as well as 

widespread brain atrophy. In fact, Milner et al. (1991) already noted that DF also presents 

bilateral basal ganglia (i.e., globus pallidus and lentiform nucleus) damage, which can be 

associated with inaccurate reaching in open loop conditions and increased reaction times 

(Rossit et al., 2009) as well as on-line control of error corrections (Grafton & Tunik, 2011). 

Therefore, this subcortical damage in DF, along with the presence of both perception and 

action deficits in this patient, generates significant difficulties in using her as a single-case 

patient model to test the neural basis of perception and action. It does not, however, diminish 

the scientific interest in contrasting further, more pure cases, of visual form agnosia with 

optic ataxia or testing the predictions of the model on a larger sample of patients and with 

other techniques such as neuroimaging and neurophysiology. 
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Figure captions 

Figure 1. Results of experiment 1. End-pointing coordinates of patient DF and average of the 

control participants per target position for free and peripheral vision. Negative x-coordinates 

denotes left side of space and positive x-coordinates the right side of space. 

Figure 2. Results of experiment 1. Mean directional error (in degrees) for patient DF and 

control participants per target position for free (A) and fixation conditions (B). C. Mean 

reaction time (in ms) for the perceptual task with fixation for patient DF and control 

participants. Error bars represent control 95% confidence intervals calculated with single-

case statistics (Crawford & Garthwaite, 2002). CI = confidence interval. 

Figure 3. Results for experiment 2. (A and B) Current proportion of corrected responses to 

left (A) and right (B) peripheral jumps for patient DF and controls. Dotted lines represent 

95% control confidence interval (lower bound only). (C) Mean correction time (in ms) for DF 

and controls. (D) Mean reaction time (in ms) for the perceptual task for patient DF and 

control participants. (C to E) Error bars represent control 95% confidence interval. (A to D) 

All control confidence intervals were calculated with single-case statistics (Crawford & 

Garthwaite, 2002). CI = confidence interval. 

Figure 4. Individual hand paths (in mm) in experiment 2 for patient DF and a representative 

control subject (HC) toward static targets (grey curves) and jump left and right trials (black 

curves). 
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Figure 5. Results for the location GO condition (experiment 3). (A and B) Current proportion 

of corrected responses to left (A) and right (B) jumps for patient DF and controls. Dotted 

lines represent control 95% confidence interval (lower bound only). (C) Mean correction time 

(in ms) for DF and controls. Error bars represent control 95% confidence interval. (A to C) 

All control confidence intervals were calculated with single-case statistics (Crawford & 

Garthwaite, 2002). CI = confidence interval. 

Figure 6. Individual hand paths (in mm) in experiment 3 (GO condition) for patient DF and a 

representative control subject (HC) toward static targets (grey curves) and jump left and right 

trials (black curves). 

Figure 7. Results for the location STOP condition (experiment 3). (A and B) Current 

proportion of corrected responses to left (A) and right (B) jumps for patient DF and controls. 

Dotted lines represent control 95% confidence interval (lower bound only). (C) Mean 

correction time (in ms) for DF and controls. Error bars represent control 95% confidence 

interval. (A to D) All control confidence intervals were calculated with single-case statistics 

(Crawford & Garthwaite, 2002). CI = confidence interval. 
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