1,021 research outputs found

    Stabilized nonconforming finite element methods for data assimilation in incompressible flows

    Get PDF
    We consider a stabilized nonconforming finite element method for data assimilation in incompressible flow subject to the Stokes' equations. The method uses a primal dual structure that allows for the inclusion of nonstandard data. Error estimates are obtained that are optimal compared to the conditional stability of the ill-posed data assimilation problem

    Intrinsic finite element modeling of a linear membrane shell problem

    Full text link
    A Galerkin finite element method for the membrane elasticity problem on a meshed surface is constructed by using two-dimensional elements extended into three dimensions. The membrane finite element model is established using the intrinsic approach suggested by [Delfour and Zol\'esio, A boundary differential equation for thin shells. J. Differential Equations, 119(2):426--449, 1995]

    A stabilized cut finite element method for partial differential equations on surfaces: The Laplace-Beltrami operator

    Full text link
    We consider solving the Laplace-Beltrami problem on a smooth two dimensional surface embedded into a three dimensional space meshed with tetrahedra. The mesh does not respect the surface and thus the surface cuts through the elements. We consider a Galerkin method based on using the restrictions of continuous piecewise linears defined on the tetrahedra to the surface as trial and test functions. The resulting discrete method may be severely ill-conditioned, and the main purpose of this paper is to suggest a remedy for this problem based on adding a consistent stabilization term to the original bilinear form. We show optimal estimates for the condition number of the stabilized method independent of the location of the surface. We also prove optimal a priori error estimates for the stabilized method

    A cut finite element method for coupled bulk-surface problems on time-dependent domains

    Full text link
    In this contribution we present a new computational method for coupled bulk-surface problems on time-dependent domains. The method is based on a space-time formulation using discontinuous piecewise linear elements in time and continuous piecewise linear elements in space on a fixed background mesh. The domain is represented using a piecewise linear level set function on the background mesh and a cut finite element method is used to discretize the bulk and surface problems. In the cut finite element method the bilinear forms associated with the weak formulation of the problem are directly evaluated on the bulk domain and the surface defined by the level set, essentially using the restrictions of the piecewise linear functions to the computational domain. In addition a stabilization term is added to stabilize convection as well as the resulting algebraic system that is solved in each time step. We show in numerical examples that the resulting method is accurate and stable and results in well conditioned algebraic systems independent of the position of the interface relative to the background mesh
    • …
    corecore