89 research outputs found

    Bounds on the tau and muon neutrino vector and axial vector charge radius

    Get PDF
    A Majorana neutrino is characterized by just one flavor diagonal electromagnetic form factor: the anapole moment, that in the static limit corresponds to the axial vector charge radius . Experimental information on this quantity is scarce, especially in the case of the tau neutrino. We present a comprehensive analysis of the available data on the single photon production process e+e>ννˉγe^+ e^- -> \nu \bar\nu \gamma off Z-resonance, and we discuss the constraints that these measurements can set on for the tau neutrino. We also derive limits for the Dirac case, when the presence of a vector charge radius is allowed. Finally, we comment on additional experimental data on νμ\nu_\mu scattering from the NuTeV, E734, CCFR and CHARM-II collaborations, and estimate the limits implied for and for the muon neutrino.Comment: 20 pages, 2 eps figures. CCFR data included in the analysis. Conclusion unchange

    Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data

    Get PDF
    Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy–galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using ∼100deg2∼100deg2 of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy–galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h−1 Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    In vivo detection of cortical plaques by MR imaging in patients with multiple sclerosis

    No full text
    BACKGROUND AND PURPOSE: In vivo detection of cortical lesions in patients with multiple sclerosis (MS) by MR imaging is hampered by several factors. Among them is the low contrast between small cortical lesions and surrounding cortical gray matter offered by present techniques, METHODS: T1-weighted 3D spoiled gradient-recalled-echo (SPGR) volumes and 2D fluid-attenuated inversion recovery (FLAIR) sequences of 22 patients with MS who had 12 monthly brain MR imaging examinations at 1.5T, using a quadrature head coil, were retrospectively analyzed. These serial studies were coregistered and averaged to generate a single high signal-to-noise ratio (SNR) mean image, which was used to identify cortical lesions. The means of 12 FLAIRs and SPGRs from 14 age- and sex-matched healthy volunteers were analyzed as well. RESULTS: No cortical lesions were found on images of healthy subjects. Eighty-six cortical lesions were identified in 13 (59.1%) patients, predominantly in the frontal lobe (73.3%); 23.3% of cortical lesions lay entirely in the cortex, whereas the remaining lesions invaded the white matter underneath. CONCLUSION: Averaging multiple SPGRs created a single high SNR volume, allowing identification of cortical lesions. Because data were obtained monthly for 1 year, the average image does not account for transient lesion activity. However, for cortical lesions that remained stable during this time, the findings are valid in demonstrating the importance of high SNR images for detecting cortical brain abnormalities in MS

    Estimation of HIV incidence and its trend in three key populations in Iran

    No full text
    In Iran, People Who Inject Drugs (PWID), Female Sex Workers (FSW), and prisoners are the main key populations at risk of HIV infection. This study aimed to evaluate the trend of HIV incidence among PWID, FSW and prisoners as an impact measure of HIV harm reduction and prevention efforts in Iran. Data were obtained from the two rounds of national bio-behavioral surveillance surveys among FSW (2010 (n = 872), 2015 (n = 1339)), PWID (2010 (n = 2417), 2014 (n = 2307)), and prisoners (2009 (n = 4536), 2013 (n = 5390)) through facility-based (FSW and PWID surveys) and cluster sampling (prisoner surveys). Time-at-risk was calculated assuming the age at first sex or drug injection as the beginning of the at-risk period and the age at the time of the interview or date when they received a positive HIV test result as the end of this period, adjusted for interval censoring. HIV incidence among PWID in 2014 was 5.39 (95% CI 4.71, 6.16) per 1,000 person-years (PY), significantly lower than in 2009 (17.07, 95% CI 15.34, 19.34). Similarly, HIV incidence was 1.12 (95% CI 0.77, 1.64) per 1,000 PY among FSW in 2015, a significant drop from 2010 (2.38, 95% CI 1.66, 3.40). Also, HIV incidence decreased among prisoners from 1.34 (95% CI: 1.08, 1.67) in 2009 to 0.49 (95% CI: 0.39, 0.61) per 1,000 PY in 2013. Our findings suggest that after an increase in the 2000s, the HIV incidence may have been decreased and stabilized among key populations in Iran
    corecore