150 research outputs found

    Production of Heparin-Binding Epidermal Growth Factor–like Growth Factor (HB-EGF) at Sites of Thermal Injury in Pediatric Patients

    Get PDF
    Fluids that accumulate at wound sites may be an important reservoir of growth factors that promote the normal wound healing response. The presence of heparin-binding growth factors was studied in burn wound fluid (BWF) from 45 pediatric patients who had sustained partial thickness burns. One of the growth factors present was similar to platelet-derived growth factor (PDGF) based on its heparin affinity, inhibition of bioactivity by a PDGF antiserum, and detection in a PDGF-AB enzyme-linked iminunosorbent assay. A second growth factor was identified as heparin-binding epidermal growth factor–like growth factor (HB-EGF) based on its heparin affinity, competition with 125I-labeled epidermal growth factor (EGF) for EGF receptor binding, and recognition in biological assays and Western blots by two HB-EGF antisera. Amino acid sequence analysis of one form of this second growth factor verified its identity as an N-terminally truncated form of HB-EGF. Immunohistochemical analysis of partial thickness burns demonstrated the presence of HB-EGF in the advancing epithelial margin, islands of regenerating epithelium within the burn wound, and in the duct and proximal tubules of eccrine sweat glands. HB-EGF in the surface epithelium of burn wounds was uniformally distributed, whereas it was restricted to the basal epithelium in nonburned skin. These data support a role for PDGF and HB-EGF in burn wound healing and suggest that the response to injury includes deposition of HB-EGF and PDGF into blister fluid and a redistribution of HB-EGF in the surface epithelium near the wound site

    Tracing Carbon Sources through Aquatic and Terrestrial Food Webs Using Amino Acid Stable Isotope Fingerprinting

    Get PDF
    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring delta C-13 patterns among amino acids (delta C-13(AA)) could distinguish between multiple aquatic and terrestrial primary production sources. We found that delta C-13(AA) patterns in contrast to bulk delta C-13 values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their delta C-13(AA) patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk delta C-13 values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer delta C-13 patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs

    Beaked whales respond to simulated and actual navy sonar

    Get PDF
    This article is distributed under the terms of the Creative Commons Public Domain declaration. The definitive version was published in PLoS One 6 (2011): e17009, doi:10.1371/journal.pone.0017009.Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.The research reported here was financially supported by the United States (U.S.) Office of Naval Research (www.onr.navy.mil) Grants N00014-07-10988, N00014-07-11023, N00014-08-10990; the U.S. Strategic Environmental Research and Development Program (www.serdp.org) Grant SI-1539, the Environmental Readiness Division of the U.S. Navy (http://www.navy.mil/local/n45/), the U.S. Chief of Naval Operations Submarine Warfare Division (Undersea Surveillance), the U.S. National Oceanic and Atmospheric Administration (National Marine Fisheries Service, Office of Science and Technology) (http://www.st.nmfs.noaa.gov/), U.S. National Oceanic and Atmospheric Administration Ocean Acoustics Program (http://www.nmfs.noaa.gov/pr/acoustics/), and the Joint Industry Program on Sound and Marine Life of the International Association of Oil and Gas Producers (www.soundandmarinelife.org)

    Biogeography in the deep : hierarchical population genomic structure of two beaked whale species

    Get PDF
    Funding for this research was provided by the Office of Naval Research, Award numbers N000141613017 and N000142112712. ABO was supported by a partial studentship from the University of St Andrews, School of Biology; OEG by the Marine Alliance for Science and Technology for Scotland (Scottish Funding Council grant HR09011); ELC by a Rutherford Discovery Fellowship from the Royal Society of New Zealand Te Aparangi; NAS by a Ramon y Cajal Fellowship from the Spanish Ministry of Innovation; MLM by the European Union’s Horizon 2020 Research and Innovation Programme (Marie Skłodowska-Curie grant 801199); CR by the Marine Institute (Cetaceans on the Frontier) and the Irish Research Council; and MTO by the Hartmann Foundation.The deep sea is the largest ecosystem on Earth, yet little is known about the processes driving patterns of genetic diversity in its inhabitants. Here, we investigated the macro- and microevolutionary processes shaping genomic population structure and diversity in two poorly understood, globally distributed, deep-sea predators: Cuvier’s beaked whale (Ziphius cavirostris) and Blainville’s beaked whale (Mesoplodon densirostris). We used double-digest restriction associated DNA (ddRAD) and whole mitochondrial genome (mitogenome) sequencing to characterise genetic patterns using phylogenetic trees, cluster analysis, isolation-by-distance, genetic diversity and differentiation statistics. Single nucleotide polymorphisms (SNPs; Blainville’s n = 43 samples, SNPs=13988; Cuvier’s n = 123, SNPs= 30479) and mitogenomes (Blainville’s n = 27; Cuvier’s n = 35) revealed substantial hierarchical structure at a global scale. Both species display significant genetic structure between the Atlantic, Indo-Pacific and in Cuvier’s, the Mediterranean Sea. Within major ocean basins, clear differentiation is found between genetic clusters on the east and west sides of the North Atlantic, and some distinct patterns of structure in the Indo-Pacific and Southern Hemisphere. We infer that macroevolutionary processes shaping patterns of genetic diversity include biogeographical barriers, highlighting the importance of such barriers even to highly mobile, deep-diving taxa. The barriers likely differ between the species due to their thermal tolerances and evolutionary histories. On a microevolutionary scale, it seems likely that the balance between resident populations displaying site fidelity, and transient individuals facilitating gene flow, shapes patterns of connectivity and genetic drift in beaked whales. Based on these results, we propose management units to facilitate improved conservation measures for these elusive species.Publisher PDFPeer reviewe

    Effects of Pregnancy and Isoniazid Preventive Therapy on Mycobacterium tuberculosis Interferon Gamma Response Assays in Women With HIV

    Get PDF
    CITATION: Weinberg, A. et al. 2021. Effects of Pregnancy and Isoniazid Preventive Therapy on Mycobacterium tuberculosis Interferon Gamma Response Assays in Women With HIV. Clinical infectious diseases, 73(9): e3555–e3562. doi:10.1093/cid/ciaa1083The original publication is available at https://academic.oup.com/cid/Background Pregnancy is accompanied by immune suppression. We hypothesized that Mycobacterium tuberculosis-specific inflammatory responses used to identify latent tuberculosis infection (LTBI) lose positivity during pregnancy. We also hypothesized that isoniazid preventive therapy (IPT) may revert LTBI diagnoses because of its sterilizing activity. Methods 944 women with human immunodeficiency virus infection (HIV) participating in a randomized, double-blind, placebo-controlled study comparing 28 weeks of IPT antepartum versus postpartum, were tested by QuantiFERON-gold-in-tube (QGIT) antepartum and by QGIT and tuberculin skin test (TST) at delivery and postpartum. Serial QGIT positivity was assessed by logistic regression using generalized estimating equations. Results From entry to delivery, 68 (24%) of 284 QGIT-positive women reverted to QGIT-negative or indeterminate. Of these, 42 (62%) recovered QGIT positivity postpartum. The loss of QGIT positivity during pregnancy was explained by decreased interferon gamma (IFNγ) production in response to TB antigen and/or mitogen. At delivery, LTBI was identified by QGIT in 205 women and by TST in 113 women. Corresponding numbers postpartum were 229 and 122 women. QGIT and TST kappa agreement coefficients were 0.4 and 0.5, respectively. Among QGIT-positive women antepartum or at delivery, 34 (12%) reverted to QGIT-negative after IPT. There were no differences between women who initiated IPT antepartum or postpartum. Conclusions Decreased IFNγ responses in pregnancy reduced QGIT positivity, suggesting that this test cannot reliably rule out LTBI during pregnancy. TST was less affected by pregnancy, but had lower positivity compared to QGIT at all time points. IPT was associated with loss of QGIT positivity, the potential clinical consequences of which need to be investigated.https://academic.oup.com/cid/article/73/9/e3555/5877271?login=truePublishers versio

    Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics

    Get PDF
    Funding Information: Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611–10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union’s Seventh Framework Programme (FP/2007– 2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611–10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics– Canadian Institute of Health Research (CIHR) [MFH]; CIHR— Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw–VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010–2011 PRIN funds of the University of Ferrara—Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli—and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, ‘5 per mille’ contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4–2007-201413 [L.M.]; ESRC (RES-060–23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NF-SI-0611–10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Funding Information: We are extremely grateful to the participants and families who contributed to all of the studies and the teams of investigators involved in each one. These include interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. This research has been conducted using the UK Biobank Resource (Application numbers 7036 and 12703). For additional study-specific acknowledgements, please see Supplementary Material. Conflict of Interest statement. D.A.L. has received support from Roche Diagnostics and Medtronic for biomarker research unrelated to the work presented here. Funding Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611-10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611-10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics-Canadian Institute of Health Research (CIHR) [MFH]; CIHR-Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw-VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010-2011 PRIN funds of the University of Ferrara-Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli-and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, '5 per mille' contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4-2007-201413 [L.M.]; ESRC (RES-060-23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NFSI-0611-10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Publisher Copyright: © The Author(s) 2018.Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5 x 10(-8). In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.Peer reviewe

    Biogeography in the deep: hierarchical population genomic structure of two beaked whale species

    Get PDF
    The deep sea is the largest ecosystem on Earth, yet little is known about the processes driving patterns of genetic diversity in its inhabitants. Here, we investigated the macro- and microevolutionary processes shaping genomic population structure and diversity in two poorly understood, globally distributed, deep-sea predators: Cuvier’s beaked whale (Ziphius cavirostris) and Blainville’s beaked whale (Mesoplodon densirostris). We used double-digest restriction associated DNA (ddRAD) and whole mitochondrial genome (mitogenome) sequencing to characterise genetic patterns using phylogenetic trees, cluster analysis, isolation-by-distance, genetic diversity and differentiation statistics. Single nucleotide polymorphisms (SNPs; Blainville’s n=43 samples, SNPs=13988; Cuvier’s n=123, SNPs= 30479) and mitogenomes (Blainville’s n=27; Cuvier’s n=35) revealed substantial hierarchical structure at a global scale. Both species display significant genetic structure between the Atlantic, Indo-Pacific and in Cuvier’s, the Mediterranean Sea. Within major ocean basins, clear differentiation is found between genetic clusters on the east and west sides of the North Atlantic, and some distinct patterns of structure in the Indo-Pacific and Southern Hemisphere. We infer that macroevolutionary processes shaping patterns of genetic diversity include biogeographical barriers, highlighting the importance of such barriers even to highly mobile, deep-diving taxa. The barriers likely differ between the species due to their thermal tolerances and evolutionary histories. On a microevolutionary scale, it seems likely that the balance between resident populations displaying site fidelity, and transient individuals facilitating gene flow, shapes patterns of connectivity and genetic drift. Based on these results, we propose management units to facilitate improved conservation measures for these elusive species

    New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.

    Get PDF
    Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism
    corecore