1,255 research outputs found
Analysis of Dialogical Argumentation via Finite State Machines
Dialogical argumentation is an important cognitive activity by which agents
exchange arguments and counterarguments as part of some process such as
discussion, debate, persuasion and negotiation. Whilst numerous formal systems
have been proposed, there is a lack of frameworks for implementing and
evaluating these proposals. First-order executable logic has been proposed as a
general framework for specifying and analysing dialogical argumentation. In
this paper, we investigate how we can implement systems for dialogical
argumentation using propositional executable logic. Our approach is to present
and evaluate an algorithm that generates a finite state machine that reflects a
propositional executable logic specification for a dialogical argumentation
together with an initial state. We also consider how the finite state machines
can be analysed, with the minimax strategy being used as an illustration of the
kinds of empirical analysis that can be undertaken.Comment: 10 page
Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest.
The emergence of Cryptococcus gattii, previously regarded as a predominantly tropical pathogen, in the temperate climate of the North American Pacific Northwest (PNW) in 1999 prompted several questions. The most prevalent among these was the timing of the introduction of this pathogen to this novel environment. Here, we infer tip-dated timing estimates for the three clonal C. gattii populations observed in the PNW, VGIIa, VGIIb, and VGIIc, based on whole-genome sequencing of 134 C. gattii isolates and using Bayesian evolutionary analysis by sampling trees (BEAST). We estimated the nucleotide substitution rate for each lineage (1.59 × 10-8, 1.59 × 10-8, and 2.70 × 10-8, respectively) to be an order of magnitude higher than common neutral fungal mutation rates (2.0 × 10-9), indicating a microevolutionary rate (e.g., successive clonal generations in a laboratory) in comparison to a species' slower, macroevolutionary rate (e.g., when using fossil records). The clonal nature of the PNW C. gattii emergence over a narrow number of years would therefore possibly explain our higher mutation rates. Our results suggest that the mean time to most recent common ancestor for all three sublineages occurred within the last 60 to 100 years. While the cause of C. gattii dispersal to the PNW is still unclear, our research estimates that the arrival is neither ancient nor very recent (i.e., <25 years ago), making a strong case for an anthropogenic introduction. IMPORTANCE The recent emergence of the pathogenic fungus Cryptococcus gattii in the Pacific Northwest (PNW) resulted in numerous investigations into the epidemiological and enzootic impacts, as well as multiple genomic explorations of the three primary molecular subtypes of the fungus that were discovered. These studies lead to the general conclusion that the subtypes identified likely emerged out of Brazil. Here, we conducted genomic dating analyses to determine the ages of the various lineages seen in the PNW and propose hypothetical causes for the dispersal events. Bayesian evolutionary analysis strongly suggests that these independent fungal populations in the PNW are all 60 to 100 years old, providing a timing that is subsequent to the opening of the Panama Canal, which allowed for more direct shipping between Brazil and the western North American coastline, a possible driving event for these fungal translocation events
Molecular characterization of Trichomonas gallinae isolates recovered from the Canadian Maritime provinces’ wild avifauna reveals the presence of the genotype responsible for the European finch trichomonosis epidemic and additional strains
Finch trichomonosis, caused by Trichomonas gallinae, emerged in the Canadian Maritime provinces in 2007 and has since caused ongoing mortality in regional purple finch (Carpodacus purpureus) and American goldfinch (Carduelis tristis) populations. Trichomonas gallinae was isolated from (1) finches and rock pigeons (Columbia livia) submitted for post-mortem or live-captured at bird feeding sites experiencing trichomonosis mortality; (2) bird seed at these same sites; and (3) rock pigeons live-captured at known roosts or humanely killed. Isolates were characterized using internal transcribed spacer (ITS) region and iron hydrogenase (Fe-hyd) gene sequences. Two distinct ITS types were found. Type A was identical to the UK finch epidemic strain and was isolated from finches and a rock pigeon with trichomonosis; apparently healthy rock pigeons and finches; and bird seed at an outbreak site. Type B was obtained from apparently healthy rock pigeons. Fe-hyd sequencing revealed six distinct subtypes. The predominant subtype in both finches and the rock pigeon with trichomonosis was identical to the UK finch epidemic strain A1. Single nucleotide polymorphisms in Fe-hyd sequences suggest there is fine-scale variation amongst isolates and that finch trichomonosis emergence in this region may not have been caused by a single spill-over event
On the emergent Semantic Web and overlooked issues
The emergent Semantic Web, despite being in its infancy, has already received a lotof attention from academia and industry. This resulted in an abundance of prototype systems and discussion most of which are centred around the underlying infrastructure. However, when we critically review the work done to date we realise that there is little discussion with respect to the vision of the Semantic Web. In particular, there is an observed dearth of discussion on how to deliver knowledge sharing in an environment such as the Semantic Web in effective and efficient manners. There are a lot of overlooked issues, associated with agents and trust to hidden assumptions made with respect to knowledge representation and robust reasoning in a distributed environment. These issues could potentially hinder further development if not considered at the early stages of designing Semantic Web systems. In this perspectives paper, we aim to help engineers and practitioners of the Semantic Web by raising awareness of these issues
Work‐Related Outcomes After a Myocardial Infarction
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90385/1/phco.24.16.1515.50946.pd
Health‐Related Quality of Life in Patients 7 Months After a Myocardial Infarction: Factors Affecting the Short Form‐12
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90293/1/phco.22.17.1616.34121.pd
Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions.
On December 17, 2018, the North American branch of the International Life Sciences Institute (ILSI North America) convened a workshop "Can We Begin to Define a Healthy Gut Microbiome Through Quantifiable Characteristics?" with >40 invited academic, government, and industry experts in Washington, DC. The workshop objectives were to 1) develop a collective expert assessment of the state of the evidence on the human gut microbiome and associated human health benefits, 2) see if there was sufficient evidence to establish measurable gut microbiome characteristics that could serve as indicators of "health," 3) identify short- and long-term research needs to fully characterize healthy gut microbiome-host relationships, and 4) publish the findings. Conclusions were as follows: 1) mechanistic links of specific changes in gut microbiome structure with function or markers of human health are not yet established; 2) it is not established if dysbiosis is a cause, consequence, or both of changes in human gut epithelial function and disease; 3) microbiome communities are highly individualized, show a high degree of interindividual variation to perturbation, and tend to be stable over years; 4) the complexity of microbiome-host interactions requires a comprehensive, multidisciplinary research agenda to elucidate relationships between gut microbiome and host health; 5) biomarkers and/or surrogate indicators of host function and pathogenic processes based on the microbiome need to be determined and validated, along with normal ranges, using approaches similar to those used to establish biomarkers and/or surrogate indicators based on host metabolic phenotypes; 6) future studies measuring responses to an exposure or intervention need to combine validated microbiome-related biomarkers and/or surrogate indicators with multiomics characterization of the microbiome; and 7) because static genetic sampling misses important short- and long-term microbiome-related dynamic changes to host health, future studies must be powered to account for inter- and intraindividual variation and should use repeated measures within individuals
SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis
Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-κB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formatio
Changing patterns of eastern Mediterranean shellfish exploitation in the Late Glacial and Early Holocene: Oxygen isotope evidence from gastropod in Epipaleolithic to Neolithic human occupation layers at the Haua Fteah cave, Libya
The seasonal pattern of shellfish foraging at the archaeological site of Haua Fteah in the Gebel Akhdar, Libya was investigated from the Epipaleolithic to the Neolithic via oxygen isotope (d18O) analyses of the topshell Phorcus (Osilinus) turbinatus. To validate this species as faithful year-round palaeoenvironmental recorder, the intra-annual variability of d18O in modern shells and sea water was analysed and compared with measured sea surface temperature (SST). The shells were found to be good candidates for seasonal shellfish forging studies as they preserve nearly the complete annual SST cycle in their shell d18O with minimal slowing or stoppage of growth. During the terminal Pleistocene Early Epipaleolithic (locally known as the Oranian, with modeled dates of 17.2-12.5 ka at 2sigma probability, Douka et al., 2014), analysis of archaeological specimens indicates that shellfish were foraged year-round. This complements other evidence from the archaeological record that shows that the cave was more intensively occupied in this period than before or afterwards. This finding is significant as the period of the Oranian was the coldest and driest phase of the last glacial cycle in the Gebel Akhdar, adding weight to the theory that the Gebel Akhdar may have served as a refugium for humans in North Africa during times of global climatic extremes. Mollusc exploitation in the Latest Pleistocene and Early Holocene, during the Late Epipaleolithic (locally known as the Capsian, c. 12.7 to 9 ka) and the Neolithic (c. 8.5 to 5.4 ka), occurred predominantly during winter. Other evidence from these archaeological phases shows that hunting activities occurred during the warmer months. Therefore, the timing of Holocene shellfish exploitation in the Gebel Akhdar may have been influenced by the seasonal availability of other resources at these times and possibly shellfish were used as a dietary supplement when other foods were less abundant
- …
