
Analysis of Dialogical Argumentation
via Finite State Machines

Anthony Hunter1

Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

Abstract. Dialogical argumentation is an important cognitive activ-
ity by which agents exchange arguments and counterarguments as part
of some process such as discussion, debate, persuasion and negotiation.
Whilst numerous formal systems have been proposed, there is a lack of
frameworks for implementing and evaluating these proposals. First-order
executable logic has been proposed as a general framework for specify-
ing and analysing dialogical argumentation. In this paper, we investi-
gate how we can implement systems for dialogical argumentation using
propositional executable logic. Our approach is to present and evalu-
ate an algorithm that generates a finite state machine that reflects a
propositional executable logic specification for a dialogical argumenta-
tion together with an initial state. We also consider how the finite state
machines can be analysed, with the minimax strategy being used as an
illustration of the kinds of empirical analysis that can be undertaken.

1 Introduction

Dialogical argumentation involves agents exchanging arguments in activities such
as discussion, debate, persuasion, and negotiation [1]. Dialogue games are now a
common approach to characterizing argumentation-based agent dialogues (e.g.
[2–12]). Dialogue games are normally made up of a set of communicative acts
called moves, and a protocol specifying which moves can be made at each step of
the dialogue. In order to compare and evaluate dialogical argumentation systems,
we proposed in a previous paper that first-order executable logic could be used as
common theoretical framework to specify and analyse dialogical argumentation
systems [13].

In this paper, we explore the implementation of dialogical argumentation
systems in executable logic. For this, we focus on propositional executable logic as
a special case, and investigate how a finite state machine (FSM) can be generated
as a representation of the possible dialogues that can emanate from an initial
state. The FSM is a useful structure for investigating various properties of the
dialogue, including conformance to protocols, and application of strategies. We
provide empirical results on generating FSMs for dialogical argumentation, and
how they can be analysed using the minimax strategy. We demonstrate through
preliminary implementation that it is computationally viable to generate the
FSMs and to analyse them. This has wider implications in using executable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/20346876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

logic for applying dialogical argumentation in practical uncertainty management
applications, since we can now empirically investigate the performance of the
systems in handling inconsistency in data and knowledge.

2 Propositional executable logic

In this section, we present a propositional version of the executable logic which
we will show is amenable to implementation. This is a simplified version of the
framework for first-order executable logic in [13].

We assume a set of atoms which we use to form propositional formulae in
the usual way using disjunction, conjunction, and negation connectives. We con-
struct modal formulae using the �, �, ⊕, and 	 modal operators. We only allow
literals to be in the scope of a modal operator. If α is a literal, then each of ⊕α,
	α, �α, and �α is an action unit. Informally, we describe the meaning of ac-
tion units as follows: ⊕α means that the action by an agent is to add the literal
α to its next private state; 	α means that the action by an agent is to delete
the literal α from its next private state; �α means that the action by an agent
is to add the literal α to the next public state; and �α means that the action
by an agent is to delete the literal α from the next public state.

We use the action units to form action formulae as follows using the dis-
junction and conjunction connectives: (1) If φ is an action unit, then φ is an
action formula; And (2) If α and β are action formulae, then α∨β and α∧β are
action formulae. Then, we define the action rules as follows: If φ is a classical
formula and ψ is an action formula then φ⇒ ψ is an action rule. For instance,
b(a) ⇒ �c(a) is an action rule (which we might use in an example where b
denotes belief, and c denotes claim, and a is some information).

Implicit in the definitions for the language is the fact that we can use it as
a meta-language [14]. For this, the object-language will be represented by terms
in this meta-language. For instance, the object-level formula p(a, b) → q(a, b)
can be represented by a term where the object-level literals p(a, b) and q(a, b)
are represented by constant symbols, and → is represented by a function sym-
bol. Then we can form the atom belief(p(a, b) → q(a, b)) where belief is a
predicate symbol. Note, in general, no special meaning is ascribed the predi-
cate symbols or terms. They are used as in classical logic. Also, the terms and
predicates are all ground, and so it is essentially a propositional language.

We use a state-based model of dialogical argumentation with the following
definition of an execution state. To simplify the presentation, we restrict consid-
eration in this paper to two agents. An execution represents a finite or infinite
sequence of execution states. If the sequence is finite, then t denotes the terminal
state, otherwise t =∞.

Definition 1. An execution e is a tuple e = (s1, a1, p, a2, s2, t), where for each
n ∈ N where 0 ≤ n ≤ t, s1(n) is a set of ground literals, a1(n) is a set of ground
action units, p(n) is a set of ground literals, a2(n) is a set of ground action units,
s2(n) is a set of ground literals, and t ∈ N∪ {∞}. For each n ∈ N, if 0 ≤ n ≤ t,

then an execution state is e(n) = (s1(n), a1(n), p(n), a2(n), s2(n)) where e(0)
is the initial state. We assume a1(0) = a2(0) = ∅. We call s1(n) the private
state of agent 1 at time n, a1(n) the action state of agent 1 at time n, p(n) the
public state at time n, a2(n) the action state of agent 2 at time n, s2(n) the
private state of agent 2 at time n.

In general, there is no restriction on the literals that can appear in the private
and public state. The choice depends on the specific dialogical argumentation
we want to specify. This flexibility means we can capture diverse kinds of in-
formation in the private state about agents by assuming predicate symbols for
their own beliefs, objectives, preferences, arguments, etc, and for what they know
about other agents. The flexibility also means we can capture diverse information
in the public state about moves made, commitments made, etc.

Example 1. The first 5 steps of an infinite execution where each row in the table
is an execution state where b denotes belief, and c denotes claim.

n s1(n) a1(n) p(n) a2(n) s2(n)
0 b(a) b(¬a)
1 b(a) �c(a),�c(¬a) b(¬a)
2 b(a) c(a) �c(¬a),�c(a) b(¬a)
3 b(a) �c(a),�c(¬a) c(¬a) b(¬a)
4 b(a) c(a) �c(¬a),�c(a) b(¬a)
5

We define a system in terms of the action rules for each agent, which specify
what moves the agent can potentially make based on the current state of the
dialogue. In this paper, we assume agents take turns, and at each time point the
actions are from the head of just one rule (as defined in the rest of this section).

Definition 2. A system is a tuple (Rulesx, Initials) where Rulesx is the set
of action rules for agent x ∈ {1, 2}, and Initials is the set of initial states.

Given the current state of an execution, the following definition captures
which rules are fired. For agent x, these are the rules that have the condition
literals satisfied by the current private state sx(n) and public state p(n). We
use classical entailment, denoted |=, for satisfaction, but other relations could
be used (e.g. Belnap’s four valued logic). In order to relate an action state in an
execution with an action formula, we require the following definition.

Definition 3. For an action state ax(n), and an action formula φ, ax(n) sat-
isfies φ, denoted ax(n) |∼ φ, as follows.

1. ax(n) |∼ α iff α ∈ ax(n) when α is an action unit
2. ax(n) |∼ α ∧ β iff ax(n) |∼ α and ax(n) |∼ β
3. ax(n) |∼ α ∨ β iff ax(n) |∼ α or ax(n) |∼ β

For an action state ax(n), and an action formula φ, ax(n) minimally satisfies
φ, denoted ax(n) φ, iff ax(n) |∼ φ and for all X ⊂ ax(n), X |6∼ φ.

Example 2. Consider the execution in Example 1. For agent 1 at n = 1, we have
a1(1) �c(a) ∧�c(¬a).

We give two constraints on an execution to ensure that they are well-behaved.
The first (propagated) ensures that each subsequent private state (respectively
each subsequent public state) is the current private state (respectively current
public state) for the agent updated by the actions given in the action state. The
second (engaged) ensures that an execution does not have one state with no
actions followed immediately by another state with no actions (otherwise the
dialogue can lapse) except at the end of the dialogue where neither agent has
further actions.

Definition 4. An execution (s1, a1, p, a2, s2, t) is propagated iff for all x ∈
{1, 2}, for all n ∈ {0, . . . , t− 1}, where a(n) = a1(n) ∪ a2(n)

1. sx(n+ 1) = (sx(n) \ {φ | 	φ ∈ ax(n)}) ∪ {φ | ⊕φ ∈ ax(n)}
2. p(n+ 1) = (p(n) \ {φ | �φ ∈ a(n)}) ∪ {φ | �φ ∈ a(n)}

Definition 5. Let e = (s1, a1, p, a2, s2, t) be an execution and a(n) = a1(n) ∪
a2(n). e is finitely engaged iff (1) t 6= ∞; (2) for all n ∈ {1, . . . , t − 2}, if
a(n) = ∅, then a(n + 1) 6= ∅ (3) a(t − 1) = ∅; and (4) a(t) = ∅. e is infinitely
engaged iff (1) t =∞; and (2) for all n ∈ N, if a(n) = ∅, then a(n+ 1) 6= ∅.

The next definition shows how a system provides the initial state of an ex-
ecution and the actions that can appear in an execution. It also ensures turn
taking by the two agents.

Definition 6. Let S = (Rulesx, Initials) be a system and e = (s1, a1, p, a2, s2, t)
be an execution. S generates e iff (1) e is propogated; (2) e is finitely engaged
or infinitely engaged; (3) e(0) ∈ Initials; and (4) for all m ∈ {1, . . . , t− 1}

1. If m is odd, then a2(m) = ∅ and either a1(m) = ∅ or there is an φ ⇒ ψ ∈
Rules1 s.t. s1(m) ∪ p(m) |= φ and a1(m) ψ

2. If m is even, then a1(m) = ∅ and either a2(m) = ∅ or there is an φ⇒ ψ ∈
Rules2 s.t. s1(m) ∪ p(m) |= φ and a2(m) ψ

Example 3. We can obtain the execution in Example 1 with the following rules:
(1) b(a)⇒ �c(a) ∧�c(¬a); And (2) b(¬a)⇒ �c(¬a) ∧�c(a).

3 Generation of finite state machines

In [13], we showed that for any executable logic system with a finite set of ground
action rules, and an initial state, there is an FSM that consumes exactly the finite
execution sequences of the system for that initial state. That result assumes that
each agent makes all its possible actions at each step of the execution. Also that
result only showed that there exist these FSMs, and did not give any way of
obtaining them.

In this paper, we focus on propositional executable logic where the agents
take it in turn, and only one head of one action rule is used, and show how we
can construct an FSM that represents the set of executions for an initial state
for a system. For this, each state is a tuple (r, s1(n), p(n), s2(n)), and each letter
in the alphabet is a tuple (a1(n), a2(n)), where n is an execution step and r is
the agent holding the turn when n < t and r is 0 when n = t.

Definition 7. An FSM M = (States, Trans, Start, Term,Alphabet) repre-
sents a system S = (Rulesx, Initials) for an initial state I ∈ Initials iff

(1)States = {(y, s1(n), p(n), s2(n)) | there is an execution e = (s1, a1, p, a2, s2, t)
s.t. S generates e and I = (s1(0), a1(0), p(0), a2(0), s2(0))
and there is an n ≤ t s.t. y = 0 when n = t

and y = 1 when n < t and n is odd
and y = 2 when n < t and n is even }

(2)Term = {(y, s1(n), p(n), s2(n)) ∈ States | y = 0}

(3)Alphabet = {(a1(n), a2(n)) | there is an n ≤ t and there is an execution e
s.t. S generates e and e(0) = I and e = (s1, a1, p, a2, s2, t).}

(4)Start = (1, s1(0), p(0), s2(0)) where I = (s1(0), a1(0), p(0), a2(0), s2(0))

(5)Trans is the smallest subset of States×Alphabet×States s.t. for all executions
e and for all n < t there is a transition τ ∈ Trans such that

τ = ((x, s1(n), p(n), s2(n)), (a1(n), a2(n)), (y, s1(n+ 1), p(n+ 1), s2(n+ 1)))

where x is 1 when n is odd, x is 2 when n is even, y is 1 when n+ 1 < t and n
is odd, y is 2 when n+ 1 < t and n is even, and y is 0 when n+ 1 = t.

Example 4. Let M be the following FSM where σ1 = (1, {b(a)}, {}, {b(¬a)}); σ2

= (2, {b(a)}, {c(a)}, {b(¬a)}); σ3 = (1, {b(a)}, {c(¬a)}, {b(¬a)}). τ1 = ({�c(a),
�c(¬a)}, ∅); and τ2 = (∅, {�c(¬a),�c(a)}). M represents the system in Ex 1.

σ1start σ2 σ3
τ1

τ2

τ1

Proposition 1. For each S = (Rulesx, Initials), then there is an FSM M such
that M represents S for an initial state I ∈ Initials.

Definition 8. A string ρ reflects an execution e = (s1, a1, p, a2, s2, t) iff ρ is
the string τ1 . . . τt−1 and for each 1 ≤ n < t, τn is the tuple (a1(n), a2(n)).

Proposition 2. Let S = (Rulesx, Initials) be a system. and let M be an FSM
that represents S for I ∈ Initials.

1. for all ρ s.t. M accepts ρ, there is an e s.t. S generates e and e(0) = I and
ρ reflects e,

2. for all finite e s.t. S generates e and e(0) = I, then there is a ρ such that M
accepts ρ and ρ reflects e.

So for each initial state for a system, we can obtain an FSM that is a concise
representation of the executions of the system for that initial state. In Figure
1, we provide an algorithm for generating these FSMs. We show correctness for
the algorithm as follows.

Proposition 3. Let S = (Rulesx, Initials) be a system and let I ∈ Initials. If
M represents S w.r.t. I and BuildMachine(Rulesx, I) = M ′, then M = M ′.

An FSM provides a more efficient representation of all the possible executions
than the set of executions for an initial state. For instance, if there is a set of
states that appear in some permutation of each of the executions then this can
be more compactly represented by an FSM. And if there are infinite sequences,
then again this can be more compactly represented by an FSM.

Once we have an FSM of a system with an initial state, we can ask obvious
simple questions such as is termination possible, is termination guaranteed, and
is one system subsumed by another? So by translating a system into an FSM,
we can harness substantial theory and tools for analysing FSMs.

Next we give a couple of very simple examples of FSMs obtained from ex-
ecutable logic. In these examples, we assume that agent 1 is trying to win an
argument with agent 2. We assume that agent 1 has a goal. This is represented
by the predicate g(c) in the private state of agent 1 for some argument c. In its
private state, each agent has zero or more arguments represented by the predi-
cate n(c), and zero or more attacks e(d, c) from d to c. In the public state, each
argument c is represented by the predicate a(c). Each agent can add attacks
e(d, c) to the public state, if the attacked argument is already in the public state
(i.e. a(c) is in the public state), and the agent also has the attacker in its private
state (i.e. n(d) is in the private state). We have encoded the rules so that after
an argument has been used as an attacker, it is removed from the private state of
the agent so that it does not keep firing the action rule (this is one of a number
of ways that we can avoid repetition of moves).

Example 5. For the following action rules, with the initial state where the private
state of agent 1 is {g(a), n(a), n(c), e(c, b)}, the public state is empty, and the pri-
vate state of agent 2 is {n(b), e(b, a)}), we get the following FSM, with the states
below and the transitions: τ1 = ({�a(a),	n(a)}, ∅); τ2 = (∅, {�a(b, a),	n(b)});
τ3 = ({�a(c, b),	n(c)}, ∅); and τ4 = (∅, ∅).

g(a) ∧ n(a)⇒ �a(a) ∧ 	n(a)
a(a) ∧ n(b) ∧ e(b, a)⇒ �a(b, a) ∧ 	n(b)
a(b) ∧ n(c) ∧ e(c, b)⇒ �a(c, b) ∧ 	n(c)

σ1start σ2 σ3 σ4 σ5 σ6
τ1 τ2 τ3 τ4 τ4

σ1 = (1, {g(a), n(a), n(c), e(c, b)}, {}, {n(b), e(b, a)})
σ2 = (2, {g(a), n(c), e(c, b)}, {a(a)}, {n(b), e(b, a)})
σ3 = (1, {g(a), n(c), e(c, b)}, {a(a), a(b, a)}, {e(b, a)})
σ4 = (2, {g(a), e(c, b)}, {a(a), a(b), a(c), a(c, b), a(b, a)}, {e(b, a)})
σ5 = (1, {g(a), e(c, b)}, {a(a), a(b), a(c), a(c, b), a(b, a)}, {e(b, a)})
σ6 = (0, {g(a), e(c, b)}, {a(a), a(b), a(c), a(c, b), a(b, a)}, {e(b, a)})

abc

This terminal state therefore contains the above argument graph, and hence the
goal argument a is in the grounded extension of the graph (as defined in [15]).

Example 6. For the following action rules, with the initial state where the private
state of agent 1 is {g(a), n(a)}, the public state is empty, and the private state of
agent 2 is {n(b), n(c), e(b, a), e(c, a)}), we get the following FSM, with the states
below and the transitions: τ1 = ({�a(a),	n(a)}, ∅); τ2 = (∅, {�a(b, a),	n(b)});
τ3 = (∅, {�a(c, a),	n(c)}); and τ4 = (∅, ∅).

g(a) ∧ n(a)⇒ �a(a) ∧ 	n(a)
a(a) ∧ n(b) ∧ e(b, a)⇒ �a(b, a) ∧ 	n(b)
a(a) ∧ n(c) ∧ e(c, a)⇒ �a(c, a) ∧ 	n(c)

σ1start σ2

σ3

σ4

σ5

σ6

σ7 σ8 σ9
τ1

τ2

τ3

τ4

τ4

τ3

τ2
τ4 τ4

σ1 = (1, {g(a), n(a)}, {}, {n(b), n(c), e(b, a), e(c, a)})
σ2 = (2, {g(a)}, {a(a)}, {n(b), n(c), e(b, a), e(c, a)})
σ3 = (1, {g(a)}, {a(a), a(b), a(b, a)}, {n(c), e(b, a), e(c, a)})
σ4 = (1, {g(a)}, {a(a), a(c), a(c, a)}, {n(b), e(b, a), e(c, a)})
σ5 = (2, {g(a)}, {a(a), a(b), a(b, a)}, {n(c), e(b, a), e(c, a)})
σ6 = (2, {g(a)}, {a(a), a(c), a(c, a)}, {n(b), e(b, a), e(c, a)})
σ7 = (1, {g(a)}, {a(a), a(b), a(c), a(c, a), a(b, a)}, {e(b, a), e(c, a)})
σ8 = (2, {g(a)}, {a(a), a(b), a(c), a(c, a), a(b, a)}, {e(b, a), e(c, a)})
σ9 = (0, {g(a)}, {a(a), a(b), a(c), a(c, a), a(b, a)}, {e(b, a), e(c, a)})

bac

The terminal state therefore contains the above argument graph, and hence the
goal argument a is in the grounded extension of the graph.

In the above examples, we have considered a formalisation of dialogical argu-
mentation where agents exchange abstract arguments and attacks. It is straight-
forward to formalize other kinds of example to exchange a wider range of moves,
richer content (e.g. logical arguments composed of premises and conclusion [10]),
and richer notions (e.g. value-based argumentation [16]).

01 BuildMachine(Rulesx, I)
02 Start = (1, S1, P, S2) where I = (S1, A1, P,A2, S2)
03 States1 = NewStates1 = {Start}
04 States2 = Trans1 = Trans2 = ∅
05 x = 1, y = 2
06 While NewStatesx 6= ∅
07 NextStates = NextTrans = ∅
08 For (x, S1, P, S2) ∈ NewStatesx

09 Fired = {ψ | φ⇒ ψ ∈ Rulesx and Sx ∪ P |= φ}
10 IfFired == ∅
11 Then NextTrans = NextTrans ∪ {((x, S1, P, S2), (∅, ∅), (y, S1, P, S2))}
12 Else forA ∈ Disjuncts(Fired)
13 NewS = Sx \ {α | 	α ∈ A} ∪ {α | ⊕α ∈ A}
14 NewP = P \ {α | �α ∈ A} ∪ {α | �α ∈ A}
15 Ifx == 1, NextState = (2, NewS, P, S2) and Label = (A, ∅)
16 Else NextState = (1, S1, P,NewS) and Label = (∅, A)
17 NextStates = NextStates ∪ {NextState}
18 NextTrans = NextTrans ∪ {((x, S1, P, S2), Label,NextState)}
19 If x == 1, then x = 2 and y = 1, else x = 1 and y = 2
20 NewStatesx = NextStates \ Statesx

21 Statesx = Statesx ∪NextStates
22 Transx = Transx ∪NextTrans
23 Close = {σ′′ | (σ, τ, σ′), (σ′, τ, σ′′) ∈ Trans1 ∪ Trans2}
24 Trans = MarkTrans(Trans1 ∪ Trans2, Close)
25 States = MarkStates(States1 ∪ States2, Close)
26 Term = MarkTerm(Close)
27 Alphabet = {τ | (σ, τ, σ′) ∈ States}
28 Return (States, T rans, Start, Term,Alphabet)

Fig. 1: An algorithm for generating an FSM from a system S
= (Rulesx, Initials) and an initial state I. The subsidiary function
Disjuncts(Fired) is {{ψ1

1 , .., ψ
1
k1
}, .., {ψi

1, .., ψ
1
ki
} | ((ψ1

1 ∧ .. ∧ ψ1
k1

) ∨ .. ∨ (ψi
1 ∧

.. ∧ ψ1
ki

)) ∈ Fired)}. For turn-taking, for agent x, Statex is the set of expanded
states and NewStatesx is the set of unexpanded states. Lines 02-05 set up the
construction with agent 1 being the agent to expand the initial state. At lines
06-18, when it is turn of x, each unexpanded state in NewStatesx is expanded
by identifying the fired rules. At lines 10-11, if there are no fired rules, then the
empty transition (i.e. (∅, ∅)) is obtained, otherwise at lines 12-17, each disjunct
for each fired rule gives a next state and transition that is added to NextStates
and NextTrans accordingly. At lines 19-22, the turn is passed to the other agent,
and NewStatesx, Statesx, and Transx updated. At line 23, the terminal states
are identified from the transitions. At line 24, the MarkTrans function returns the
union of the transitions for each agent but for each σ = (x, S1, P, S2) ∈ Term,
σ is changed to (0, S1, P, S2) in order to mark it as a terminal state in the FSM.
At line 25, the MarkStates function returns the union of the states for each agent
but for each σ = (x, S1, P, S2) ∈ Term, σ is changed to (0, S1, P, S2), and sim-
ilarly at line 26, MarkTerm function returns the set Close but with each state
being of the form (0, S1, P, S2).

4 Minimax analysis of finite state machines

Minimax analysis is applied to two-person games for deciding which moves to
make. We assume two players called MIN and MAX. MAX moves first, and
they take turns until the game is over. An end function determines when the
game is over. Each state where the game has ended is an end state. A utility
function (i.e. a payoff function) gives the outcome of the game (eg chess has
win, draw, and loose). The minimax strategy is that MAX aims to get to an
end state that maximizes its utility regardless of what MIN does

We can apply the minimax strategy to the FSM machines generated for
dialogical argumentation as follows: (1) Undertake breadth-first search of the
FSM; (2) Stop searching at a node on a branch if the node is an end state
according to the end function (note, this is not necessarily a terminal state in
the FSM); (3) Apply the utility function to each leaf node n (i.e. to each end
state) in the search tree to give the value value(n) of the node; (4) Traverse the
tree in post-order, and calculate the value of each non-leaf node as follows where
the non-leaf node n is at depth d and with children {n1, .., nk}:

– If d is odd, then value(n) is the maximum of value(n1),.., value(nk).
– If d is even, then value(n) is the minimum of value(n1),.., value(nk).

There are numerous types of dialogical argumentation that can be modelled
using propositional executable logic and analysed using the minimax strategy.
Before we discuss some of these options, we consider some simple examples where
we assume that the search tree is exhaustive, (so each branch only terminates
when it reaches a terminal state in the FSM), and the utility function returns 1
if the goal argument is in the grounded extension of the graph in the terminal
state, and returns 0 otherwise.

Example 7. From the FSM in Example 5, we get the minimax search tree in
Figure 2a, and from the FSM in Example 6, we get the minimax search tree
in Figure 2b. In each case, the terminal states contains an argument graph in
which the goal argument is in the grounded extension of the graph. So each leaf
of the minimax tree has a utility of 1, and each non-node has the value 1. Hence,
agent 1 is guaranteed to win each dialogue whatever agent 2 does.

The next example is more interesting from the point of view of using the
minimax strategy since agent 1 has a choice of what moves it can make and this
can affect whether or not it wins.

Example 8. In this example, we assume agent 1 has two goals a and b, but it
can only present arguments for one of them. So if it makes the wrong choice
it can loose the game. The executable logic rules and resulting FSM are as
follows where τ1 = ({�a(b),	n(b),	g(a)}, ∅), τ2 = ({�a(a),	n(a),	g(b)}, ∅),
τ3 = (∅, {�a(c, a),	n(c)}), and τ4 = (∅, ∅). For the minimax tree (given in
Figure 2c) the left branch results in an argument graph in which the goal is not
in the grounded extension, whereas the right branch terminates in an argument

graph in which the goal is in the grounded extension. By a minimax analysis,
agent 1 wins.

g(a) ∧ n(a)⇒ �a(a) ∧ 	n(a) ∧ 	g(b)
g(b) ∧ n(b)⇒ �a(b) ∧ 	n(b) ∧ 	g(a)
a(a) ∧ n(c) ∧ e(c, a)⇒ �a(c, a) ∧ 	n(c)

σ1start

σ2 σ4 σ6

σ3 σ5 σ7 σ8

τ1

τ2

τ4

τ3

τ4

τ4 τ4

σ1 = (1, {g(a), g(b), n(a), n(b)}, {}, {n(c), e(c, a)})
σ2 = (2, {g(a), g(b), n(a)}, {a(b)}, {n(c), e(c, a)})
σ3 = (2, {g(a), g(b), n(b)}, {a(a)}, {n(c), e(c, a)})
σ4 = (1, {g(a), g(b), n(a)}, {a(b)}, {n(c), e(c, a)})
σ5 = (1, {g(a), g(b), n(b)}, {a(a), a(c), a(c, a)}, {e(c, a)})
σ6 = (0, {g(a), g(b), n(a)}, {a(b)}, {n(c), e(c, a)})
σ7 = (2, {g(a), g(b), n(b)}, {a(a), a(c), a(c, a)}, {e(c, a)})
σ8 = (0, {g(a), g(b), n(b)}, {a(a), a(c), a(c, a)}, {e(c, a)})

σ1[1]

σ2[1]

σ3[1]

(a)

σ1[1]

σ2[1]

σ3[1]

σ5[1]

σ7[1]

σ4[1]

σ6[1]

σ7[1]

(b)

σ1[1]

σ3[0]

σ5[0]

σ2[1]

(c)

Fig. 2: Minimax trees for Examples 7 and 8. Since each terminal state in an
FSM is a copy of the previous two states, we save space by not giving these
copies in the search tree. The minimax value for a node is given in the square
brackets within the node. (a) is for Example 5, (b) is for Example 6 and (c) is
for Example 8

We can use any criterion for identifying the end state. In the above, we have
used the exhaustive end function giving an end state (i.e. the leaf node in
the search tree) which is a terminal state in the FSM followed by two empty

transitions. If the branch does not come to a terminal state in the FSM, then
it is an infinite branch. We could use a non-repetitive end function where
the search tree stops when there are no new nodes to visit. For instance, for
example 4, we could use the non-repetitive end function to give a search tree
that contains one branch σ1, σ2, σ3 where σ1 is the root and σ3 is the leaf.
Another simple option is a fixed-depth end function which has a specified
maximum depth for any branch of the search tree. More advanced options for
end functions include concession end function when an agent has a loosing
position, and it knows that it cannot add anything to change the position, then
it concedes.

There is also a range of options for the utility function. In the examples,
we have used grounded semantics to determine whether a goal argument is in
the grounded extension of the argument graph specified in the terminal public
state. A refinement is the weighted utility function which weights the utility
assigned by the grounded utility function by 1/d where d is the depth of the
leaf. The aim of this is to favour shorter dialogues. Further definitions for utility
functions arise from using other semantics such as preferred or stable semantics
and richer formalisms such as valued-based argumentation [16].

5 Implementation study

In this study, we have implemented three algorithms: The generator algorithm for
taking an initial state and a set of action rules for each agent, and outputting
the fabricated FSM; A breadth-first search algorithm for taking an FSM and
a choice of termination function, and outputting a search tree; And a minimax
assignment algorithm for taking a search tree and a choice of utility function, and
outputting a minimax tree. These implemented algorithms were used together
so that given an initial state and rules for each agent, the overall output was a
minimax tree. This could then be used to determine whether or not agent 1 had
a winning strategy (given the initial state). The implementation incorporates the
exhaustive termination function, and two choices of utility function (grounded
and weighted grounded).

The implementation is in Python 2.6 and was run on a Windows XP PC
with Intel Core 2 Duo CPU E8500 at 3.16 GHz and 3.25 GB RAM. For the
evaluation, we also implemented an algorithm for generating tests inputs. Each
test input comprised an initial state, and a set of action rules for each agent.
Each initial state involved 20 arguments randomly assigned to the two agents
and up to 20 attacks per agent. For each attack in an agent’s private state, the
attacker is an argument in the agent’s private state, and the attacked argument
is an argument in the other agent’s private state.

The results are presented in the following table. Each row is produced from
100 runs. Each run (i.e. a single initial state and action rules for each agent),
was timed. If the time exceeded 100 seconds for the generator algorithm, the run
was terminated

Average no. Average no. Average no. Average no. Average Median No. of runs
attacks FSM nodes FSM transitions tree nodes run time run time timed out

9.64 6.29 9.59 31.43 0.27 0.18 0
11.47 16.01 39.48 1049.14 6.75 0.18 1
13.29 12.03 27.74 973.84 9.09 0.18 2
14.96 12.50 27.77 668.65 6.41 0.19 13
16.98 19.81 49.96 2229.64 25.09 0.20 19
18.02 19.01 47.81 2992.24 43.43 0.23 30

As can be seen from these results, up to about 15 attacks per agent, the
implementation runs in negligible time. However, above 15 attacks per agent,
the time did increase markedly, and a substantially minority of these timed out.
To indicate the size of the larger FSMs, consider the last line of the table where
the runs had an average of 18.02 attacks per agent: For this set, 8 out of 100 runs
had 80+ nodes in the FSM. Of these 8 runs, the number of states was between
80 and 163, and the number of transitions was between 223 and 514.

The algorithm is somewhat naive in a number of respects. For instance, the
algorithm for finding the grounded extension considers every subset of the set
of arguments (i.e. 220 sets). Clearly more efficient algorithms can be developed
or calculation subcontracted to a system such as ASPARTIX [17]. Nonetheless,
there are interesting applications where 20 arguments would be a reasonable,
and so we have shown that we can analyse such situations successfully using the
Minimax strategy, and with some refinement of the algorithms, it is likely that
larger FSMs can be constructed and analysed.

Since the main aim was to show that FSMs can be generated and analysed,
we only used a simple kind of argumentation dialogue. It is straightforward to
develop alternative and more complex scenarios, using the language of propo-
sitional executable logic e.g. for capturing beliefs, goals, uncertainty etc, for
specifying richer behaviour.

6 Discussion

In this paper, we have investigated a uniform way of presenting and executing
dialogical argumentation systems based on a propositional executable logic. As
a result different dialogical argumentation systems can be compared and im-
plemented more easily than before. The implementation is generic in that any
action rules and initial states can be used to generate the FSM and properties
of them can be identified empirically.

In the examples in this paper, we have assumed that when an agent presents
an argument, the only reaction the other agent can have is to present a coun-
terargument (if it has one) from a set that is fixed in advance of the dialogue.
Yet when agents argue, one agent can reveal information that can be used by
the other agent to create new arguments. We illustrate this in the context of
logical arguments. Here, we assume that each argument is a tuple 〈Φ,ψ〉 where
Φ is a set of formulae that entails a formula ψ. In Figure 3a, we see an argument
graph instantiated with logical arguments. Suppose arguments A1, A3 and A4

are presented by agent 1, and arguments A2, A5 and A6 are presented by agent
2. Since agent 1 is being exhaustive in the arguments it presents, agent 2 can
get a formula that it can use to create a counterargument. In Figure 3b, agent 1
is selective in the arguments it presents, and as a result, agent 2 lacks a formula
in order to construct the counterarguments it needs. We can model this argu-
mentation in propositional executable logic, generate the corresponding FSM,
and provide an analysis in terms of minimax strategy that would ensure that
agent 1 would provide A4 and not A3, thereby ensuring that it behaves more
intelligently. We can capture each of these arguments as a proposition and use
the minimax strategy in our implementation to obtain the tree in Figure 3b.

A1 = 〈{b, b→ a}, a〉

A2 = 〈{c, c→ ¬b},¬b〉

A3 = 〈{d, e, d ∧ e→ ¬c},¬c〉

A5 = 〈{d, d→ ¬e},¬e〉

A4 = 〈{g, g → ¬c},¬c〉

A6 = 〈{d, d→ ¬g},¬g〉

(a)

A1 = 〈{b, b→ a}, a〉

A2 = 〈{c, c→ ¬b},¬b〉

A4 = 〈{g, g → ¬c},¬c〉

(b)

Fig. 3: Consider the following knowledgebases for each agent ∆1 = {b, d, e, g, b→
a, d ∧ e → ¬c, g → ¬c} and ∆2 = {c, c → ¬b, d → ¬e, d → ¬g}. (a) Agent 1 is
exhaustive in the arguments posited, thereby allowing agent 2 to construct argu-
ments that cause the root to be defeated. (b)Agent is selective in the arguments
posited, thereby ensuring that the root is undefeated.

General frameworks for dialogue games have been proposed [18, 8]. They offer
insights on dialogical argumentation systems, but they do not provide sufficient
detail to formally analyse or implement specific systems. A more detailed frame-
work, that is based on situation calculus, has been proposed by Brewka [19],
though the emphasis is on modelling the protocols for the moves made in dia-
logical argumentation based on the public state rather than on strategies based
on the private states of the agents.

The minimax strategy has been considered elsewhere in models of argumen-
tation (such as for determining argument strength [20] and for marking strategies
for dialectical trees [21], for deciding on utterances in a specific dialogical argu-
mentation [22]). However, this paper appears to be the first empirical study of
using the minimax strategy in dialogical argumentation.

In future work, we will extend the analytical techniques for imperfect games
where only a partial search tree is constructed before the utility function is
applied, and extend the representation with weights on transitions (e.g. weights
based on tropical semirings to capture probabilistic transitions) to explore the
choices of transition based on preference or uncertainty.

References

1. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)
2. Amgoud, L., Maudet, N., Parsons, S.: Arguments, dialogue and negotiation. In:

European Conf. on Artificial Intelligence (ECAI 2000), IOS Press (2000) 338–342
3. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agents and

Multi-Agent Systems 19(2) (2009) 173–209
4. Dignum, F., Dunin-Keplicz, B., Verbrugge, R.: Dialogue in team formation. In:

Issues in Agent Communication. Springer (2000) 264–280
5. Fan, X., Toni, F.: Assumption-based argumentation dialogues. In: Proceedings of

International Joint Conference on Artificial Intelligence (IJCAI’11). (2011) 198–203
6. Hamblin, C.: Mathematical models of dialogue. Theoria 37 (1971) 567–583
7. Mackenzie, J.: Question begging in non-cumulative systems. Journal of Philosoph-

ical Logic 8 (1979) 117–133
8. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dia-

logues between autonomous agents. Journal of Logic, Language and Information
11 (2002) 315–334

9. McBurney, P., van Eijk, R., Parsons, S., Amgoud, L.: A dialogue-game protocol
for agent purchase negotiations. Journal of Autonomous Agents and Multi-Agent
Systems 7 (2003) 235–273

10. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some
formal inter-agent dialogues. J. of Logic and Comp. 13(3) (2003) 347–376

11. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J. of
Logic and Comp. 15(6) (2005) 1009–1040

12. Walton, D., Krabbe, E.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. SUNY Press (1995)

13. Black, E., Hunter, A.: Executable logic for dialogical argumentation. In: European
Conf. on Artificial Intelligence (ECAI’12), IOS Press (2012) 15–20

14. Wooldridge, M., McBurney, P., Parsons, S.: On the meta-logic of arguments. In:
Argumentatoin in Multi-agent Systems. Volume 4049 of LNCS., Springer (2005)
42–56

15. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2) (1995) 321–357

16. Bench-Capon, T.: Persuasion in practical argument using value based argumenta-
tion frameworks. Journal of Logic and Computation 13(3) (2003) 429–448

17. Egly, U., Gaggl, S., Woltran, S.: Aspartix: Implementing argumentation frame-
works using answer-set programming. In: Proceedings of the Twenty-Fourth Inter-
national Conference on Logic Programming (ICLP’08),. Volume 5366 of LNCS.,
Springer (2008) 734–738

18. Maudet, N., Evrard, F.: A generic framework for dialogue game implementation.
In: Proc. 2nd Workshop on Formal Semantics & Pragmatics of Dialogue, University
of Twente (1998) 185198

19. Brewka, G.: Dynamic argument systems: A formal model of argumentation pro-
cesses based on situation calculus. J. Logic & Comp. 11(2) (2001) 257–282

20. Matt, P., Toni, F.: A game-theoretic measure of argument strength for abstract
argumentation. In: Logics in A.I. Volume 5293 of LNCS. (2008) 285–297

21. Rotstein, N., Moguillansky, M., Simari, G.: Dialectical abstract argumentation.
In: Proceedings of IJCAI’09. (2009) 898–903

22. Oren, N., Norman, T.: Arguing using opponent models. In: Argumentation in
Multi-agent Systems. Volume 6057 of LNCS. (2009) 160–174

