58 research outputs found

    Defining and unpacking the core concepts of pharmacology education

    Get PDF
    Pharmacology education currently lacks a research-based consensus on which core concepts all graduates should know and understand, as well as a valid and reliable means to assess core conceptual learning. The Core Concepts in Pharmacology Expert Group (CC-PEG) from Australia and New Zealand recently identified a set of core concepts of pharmacology education as a first step toward developing a concept inventory—a valid and reliable tool to assess learner attainment of concepts. In the current study, CC-PEG used established methodologies to define each concept and then unpack its key components. Expert working groups of three to seven educators were formed to unpack concepts within specific conceptual groupings: what the body does to the drug (pharmacokinetics); what the drug does to the body (pharmacodynamics); and system integration and modification of drug–response. First, a one-sentence definition was developed for each core concept. Next, sub-concepts were established for each core concept. These twenty core concepts, along with their respective definitions and sub-concepts, can provide pharmacology educators with a resource to guide the development of new curricula and the evaluation of existing curricula. The unpacking and articulation of these core concepts will also inform the development of a pharmacology concept inventory. We anticipate that these resources will advance further collaboration across the international pharmacology education community to improve curricula, teaching, assessment, and learning.Marina Santiago, Elizabeth A. Davis, Tina Hinton, Thomas A. Angelo, Alison Shield, Anna-Marie Babey, Barbara Kemp-Harper, Gregg Maynard, Hesham S. Al-Sallami, Ian F. Musgrave, Lynette B. Fernandes, Suong N. T. Ngo, Arthur Christopoulos, Paul J. Whit

    Defining and unpacking the core concepts of pharmacology education

    Get PDF
    Pharmacology education currently lacks a research-based consensus on which core concepts all graduates should know and understand, as well as a valid and reliable means to assess core conceptual learning. The Core Concepts in Pharmacology Expert Group (CC-PEG) from Australia and New Zealand recently identified a set of core concepts of pharmacology education as a first step toward developing a concept inventory—a valid and reliable tool to assess learner attainment of concepts. In the current study, CC-PEG used established methodologies to define each concept and then unpack its key components. Expert working groups of three to seven educators were formed to unpack concepts within specific conceptual groupings: what the body does to the drug (pharmacokinetics); what the drug does to the body (pharmacodynamics); and system integration and modification of drug–response. First, a one-sentence definition was developed for each core concept. Next, sub-concepts were established for each core concept. These twenty core concepts, along with their respective definitions and sub-concepts, can provide pharmacology educators with a resource to guide the development of new curricula and the evaluation of existing curricula. The unpacking and articulation of these core concepts will also inform the development of a pharmacology concept inventory. We anticipate that these resources will advance further collaboration across the international pharmacology education community to improve curricula, teaching, assessment, and learning

    Listening carefully: increased perceptual acuity for species discrimination in multispecies signalling assemblages

    Get PDF
    Communication is a fundamental component of evolutionary change because of its role in mate choice and sexual selection. Acoustic signals are a vital element of animal communication and sympatric species may use private frequency bands to facilitate intraspecific communication and identification of conspecifics (acoustic communication hypothesis, ACH). If so, animals should show increasing rates of misclassification with increasing overlap in frequency between their own calls and those used by sympatric heterospecifics. We tested this on the echolocation of the horseshoe bat, Rhinolophus capensis, using a classical habituation-dishabituation experiment in which we exposed R. capensis from two phonetic populations to echolocation calls of sympatric and allopatric horseshoe bat species (Rhinolophus clivosus and Rhinolophus damarensis) and different phonetic populations of R. capensis. As predicted by the ACH, R. capensis from both test populations were able to discriminate between their own calls and calls of the respective sympatric horseshoe bat species. However, only bats from one test population were able to discriminate between calls of allopatric heterospecifics and their own population when both were using the same frequency. The local acoustic signalling assemblages (ensemble of signals from sympatric conspecifics and heterospecifics) of the two populations differed in complexity as a result of contact with other phonetic populations and sympatric heterospecifics. We therefore propose that a hierarchy of discrimination ability has evolved within the same species. Frequency alone may be sufficient to assess species membership in relatively simple acoustic assemblages but the ability to use additional acoustic cues may have evolved in more complex acoustic assemblages to circumvent misidentifications as a result of the use of overlapping signals. When the acoustic signal design is under strong constraints as a result of dual functions and the available acoustic space is limited because of co-occurring species, species discrimination is mediated through improved sensory acuity in the receiver

    Winners, Losers, Insiders, and Outsiders: Comparing Hierometer and Sociometer Theories of Self-Regard.

    Get PDF
    What evolutionary function does self-regard serve? Hierometer theory, introduced here, provides one answer: it helps individuals navigate status hierarchies, which feature zero-sum contests that can be lost as well as won. In particular, self-regard tracks social status to regulate behavioral assertiveness, augmenting or diminishing it to optimize performance in such contests. Hierometer theory also offers a conceptual counterpoint that helps resolve ambiguities in sociometer theory, which offers a complementary account of self-regard's evolutionary function. In two large-scale cross-sectional studies, we operationalized theoretically relevant variables at three distinct levels of analysis, namely, social (relations: status, inclusion), psychological (self-regard: self-esteem, narcissism), and behavioral (strategy: assertiveness, affiliativeness). Correlational and mediational analyses consistently supported hierometer theory, but offered only mixed support for sociometer theory, including when controlling for confounding constructs (anxiety, depression). We interpret our results in terms of a broader agency-communion framework

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Infarto agudo de miocardio y bloqueo de rama izquierda: utilidad de los criterios de Sgarbossa

    No full text
    corecore