60 research outputs found

    A Kind of Craziness: Susanna Moore on Women, Writing, Sex and Feminism

    Get PDF
    The closing scene of Susanna Moore's 1995 novel, In The Cut, remains one of the most shocking and powerfully written episodes of sexual violence by a contemporary female author. Narrator, Frannie Avery, watches as her breasts are sliced from her body. This violent description later shifts to a disengaged poetic consciousness in which Frannie's narration dissolves into quotation. Moore's juxtaposition of meditative description with an account of dismemberment renders the scene so beautiful, that it is potentially hugely troubling. As one critic's response reflects, how can a presumed feminist justify producing an 'erotic story involving the matter-of-fact mutilation of women'? It was Moore's responses to queries such as these, as well as my own ambivalent attraction to her narratives, as a woman, a writer, and a feminist, that I wanted to gain a greater understanding of by interviewing the author. As a reader of Moore's fiction, I am fascinated, as many women would be, by the representations of femininity in her novels. From The Whiteness of Bones to Sleeping Beauties, In the Cut, One Last Look and The Big Girls, it seems that the women in her novels seem to encounter certain hardships and dangers, simply because they are women. Perhaps more disturbing than Moore's unapologetic depiction of sexualised attacks on the female body was my discovery, during research prior to the interview, that In the Cut is listed on Playboy's 'Top 25 'sexiest' novels of all time.' Moore acknowledges that 'it is important for a writer to understand and anticipate the response of their readers,' and that often the topics of her novels have been chosen to elicit a particular response, to change the way her writing and her identity as an author has been perceived - but is it always a desirable response? And are authors ever free of moral responsibility

    Water Clarity Affects Microbial Diversity in Lakes at Longwood University

    Get PDF
    This project intends to discover how water clarity affects the diversity of Longwood University\u27s native freshwater microbiomes. The group hypothesized that if the lake water clarity is low, then microbiomes within the lake will be less abundant. The results of this experiment proved that the lake waters were far clearer than previous measurements of clarity had shown, as bacterial colonies were highly abundant

    Version 8 IMK/IAA MIPAS measurements of CFC-11, CFC-12, and HCFC-22

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat provided infrared limb emission spectra, which were used to infer global distributions of CFC-11, CFC-12, and HCFC-22. Spectra were analysed using constrained non-linear least squares fitting. Changes with respect to earlier data versions refer to the use of version 8 spectra, the altitude range where the background continuum is considered, details of the regularisation and microwindow selection, and the occasional joint-fitting of interfering species, new spectroscopic data, the joint-fit of a tangent-height dependent spectral offset, and the use of 2D temperature fields. In the lower stratosphere the error budget is dominated by uncertainties in spectroscopic data, while above measurement noise is the leading error source. The vertical resolution of CFC-11 and CFC-12 is 2–3 km near the tropopause, about 4 km at 30 km altitude and 6–10 km at 50 km. The vertical resolution of HCFC-22 is somewhat coarser, 3–4 km at the tropopause and 10–12 km at 35 km altitude. In the altitude range of interest, the horizontal resolution is typically limited by the horizontal sampling of the measurements, not by the smearing of the retrieval. Horizontal information displacement does not exceed 150 km, which can become an issue only for comparisons with model simulations with high horizontal resolution or localised in-situ observations. Along with the regular data product, an alternative representation of the data on a coarser vertical grid is offered. These data can be used without consideration of the averaging kernels. The new data version provides improvement with respect to reduction of biases and improved consistency between the full and reduced resolution mission period of MIPAS

    MIPAS ozone retrieval version 8: middle-atmosphere measurements

    Get PDF
    We present a new version of O3 data retrieved from the three Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observation modes that we refer to for simplicity as the modes of the middle atmosphere (middle atmosphere, MA; upper atmosphere, UA; and noctilucent cloud, NLC). The O3 profiles cover altitudes from 20 up to 100 km for the daytime and up to 105 km at nighttime, for all latitudes, and the period 2005 until 2012. The data have been obtained with the IMK–IAA (Institute of Meteorology and Climate Research and Instituto de Astrofísica de Andalucía) MIPAS level-2 data processor and are based on ESA version-8 re-calibrated radiance spectra with improved temporal stability. The processing included several improvements with respect to the previous version, such as the consistency of the microwindows and spectroscopic data with those used in the nominal-mode V8R data, the O3 a priori profiles, and updates of the non-local thermodynamic equilibrium (non-LTE) parameters and the nighttime atomic oxygen. In particular, the collisional relaxation of O3(v1,v3) by the atomic oxygen was reduced by a factor of 2 in order to obtain a better agreement of nighttime mesospheric O3 with “non-LTE-free” measurements. Random errors are dominated by the measurement noise with 1σ values for single profiles for the daytime of &lt; 5 % below ∼ 60 km, 5 %–10 % between 60 and 70 km, 10 %–20 % at 70–90 km, and about 30 % at 95 km. For nighttime, they are very similar below 70 km but smaller above (10 %–20 % at 75–95 km, 20 %–30 % at 95–100 km and larger than 30 % above 100 km). The systematic error is ∼ 6 % below ∼ 60 km (dominated by uncertainties in spectroscopic data) and 8 %–12 % above ∼ 60 km, mainly caused by non-LTE uncertainties. The systematic errors in the 80–100 km range are significantly smaller than in the previous version. The major differences with respect to the previous version are as follows: (1) the new retrievals provide O3 abundances in the 20–50 km altitude range that are larger by about 2 %–5 % (0.2–0.5 ppmv); (2) O3 abundances were reduced by ∼ 2 %–4 % between 50 and 60 km in the tropics and mid-latitudes; (3) O3 abundances in the nighttime O3 minimum just below 80 km were reduced, leading to a more realistic diurnal variation; (4) daytime O3 concentrations in the secondary maximum at the tropical and middle latitudes (∼ 40 %, 0.2–0.3 ppmv) were larger; and (5) nighttime O3 abundances in the secondary maximum were reduced by 10 %–30 %. The O3 profiles retrieved from the nominal mode (NOM) and the middle-atmosphere modes are fully consistent in their common altitude range (20–70 km). Only at 60–70 km does daytime O3 of NOM seem to be larger than that of MA/UA by 2 %–10 %. Compared to other satellite instruments, MIPAS seems to have a positive bias of 5 %–8 % below 70 km. Noticeably, the new version of MIPAS data agrees much better than before with all instruments in the upper mesosphere–lower thermosphere, reducing the differences from ∼± 20 % to ∼± 10 %. Further, the diurnal variation in O3 in the upper mesosphere (near 80 km) has been significantly improved.</p

    Addressing Rural Health Disparities Through Policy Change in the Stroke Belt

    Get PDF
    Obesity prevention policies are needed, particularly in low-income, rural areas of the Southern United States, where obesity and chronic disease prevalence are high. In 2009, the Centers for Disease Control and Prevention issued the “Common Community Measures for Obesity Prevention” (COCOMO), a set of 24 recommended community-level obesity prevention strategies

    Personalized bacteriophage therapy outcomes for 100 consecutive cases:a multicentre, multinational, retrospective observational study

    Get PDF
    In contrast to the many reports of successful real-world cases of personalized bacteriophage therapy (BT), randomized controlled trials of non-personalized bacteriophage products have not produced the expected results. Here we present the outcomes of a retrospective observational analysis of the first 100 consecutive cases of personalized BT of difficult-to-treat infections facilitated by a Belgian consortium in 35 hospitals, 29 cities and 12 countries during the period from 1 January 2008 to 30 April 2022. We assessed how often personalized BT produced a positive clinical outcome (general efficacy) and performed a regression analysis to identify functional relationships. The most common indications were lower respiratory tract, skin and soft tissue, and bone infections, and involved combinations of 26 bacteriophages and 6 defined bacteriophage cocktails, individually selected and sometimes pre-adapted to target the causative bacterial pathogens. Clinical improvement and eradication of the targeted bacteria were reported for 77.2% and 61.3% of infections, respectively. In our dataset of 100 cases, eradication was 70% less probable when no concomitant antibiotics were used (odds ratio = 0.3; 95% confidence interval = 0.127–0.749). In vivo selection of bacteriophage resistance and in vitro bacteriophage–antibiotic synergy were documented in 43.8% (7/16 patients) and 90% (9/10) of evaluated patients, respectively. We observed a combination of antibiotic re-sensitization and reduced virulence in bacteriophage-resistant bacterial isolates that emerged during BT. Bacteriophage immune neutralization was observed in 38.5% (5/13) of screened patients. Fifteen adverse events were reported, including seven non-serious adverse drug reactions suspected to be linked to BT. While our analysis is limited by the uncontrolled nature of these data, it indicates that BT can be effective in combination with antibiotics and can inform the design of future controlled clinical trials. BT100 study, ClinicalTrials.gov registration: NCT05498363.</p

    The Beaker phenomenon and the genomic transformation of northwest Europe

    Get PDF
    From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries
    corecore