98 research outputs found

    Origin of Outer Solar System

    Get PDF
    Our ongoing research program combines extensive deep and wide-field observations using a variety of observational platforms with numerical studies of the dynamics of small bodies in the outer solar system in order to advance the main scientific goals of the community studying the Kuiper belt and the outer solar system. These include: (1) determining the relative populations of the known classes of KBOs as well as other possible classes; ( 2 ) determining the size distributions or luminosity function of the individual populations or the Kuiper belt as a whole; (3) determining the inclinations distributions of these populations; (4) establishing the radial extent of the Kuiper belt; ( 5 ) measuring and relating the physical properties of different types of KBOs to those of other solar system bodies; and, (6) completing our systematic inventory of the satellites of the outer planets

    Getting Potomac Fever: Increasing Civic Engagement Through Experiential Learning Communities

    Get PDF
    Drawing upon the literature on experiential learning, learning communities, and the scholarship of civic engagement, this paper assesses the outcomes of the Washington D.C. Summer Study Program developed by the College of St Benedict and St. John’s University. We are especially interested in examining the extent to which students who undertake this two month, eight credit internship learning community experience engage with politics and political life. Do students learn more about the US political system, its operation and opportunities? Are they more enthusiastic about public policy and politics? Do they increase their level of trust in government or their feelings of efficacy? In addition to these questions, we examine what the students’ experiences mean for them in terms of the integration of past and future course material, and how students use these experiences to examine their career goals, to develop their own career path, and to learn to live and work independently and responsibly in an urban setting. Data gathered from a survey of the program’s interns is compared with an initial survey of 200 students who have not yet undertaken internships either inside or outside a learning community model, as well as data from interviews with students, site supervisors, and faculty, and student archival data from the three decades old program. The study demonstrates that while there are numerous tradeoffs and costs, internships embedded within a learning community create unique benefits not available to the more isolated individual internship model

    Engaging the Dynamics of Pastoral Imagination for Field Education

    Get PDF
    The importance and the process of engaging pastoral imagination in field education

    A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease

    Get PDF
    Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba(-/-) mice and the control littermate (gba(+/+)) by infecting differentiated primary cortical neurons in culture with an EF1 alpha-SV40T lentivirus. Immortalized gba(-/-) neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba(+/+) neurons. This null allele gba(-/-) mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies

    Global Oceans

    Get PDF
    Global Oceans is one chapter from the State of the Climate in 2019 annual report and is avail-able from https://doi.org/10.1175/BAMS-D-20-0105.1. Compiled by NOAA’s National Centers for Environmental Information, State of the Climate in 2019 is based on contr1ibutions from scien-tists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instru-ments located on land, water, ice, and in space. The full report is available from https://doi.org /10.1175/2020BAMSStateoftheClimate.1

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe
    corecore