58 research outputs found

    Accounting for unequal access to higher education: the role of social identity factors

    Get PDF
    Western societies stress the potential for anyone, irrespective of social background, to improve their position within society. However, disadvantaged students face barriers in gaining a good education. Two studies in secondary schools show how perceptions of identity compatibility and anticipated fit influence students’ university choices. It was found that relatively disadvantaged students scored lower on identity compatibility, and that low scores on identity compatibility were associated with lower anticipated fit at a local selective (Study 1) or highly selective (Study 2) university. Anticipated fit, in turn, predicted the type of university to which participants wanted to apply; those who anticipated fitting in more at selective universities were more likely to apply to higher status universities. These relations were significant while controlling for academic achievement. Together, these studies suggest that social identity factors play a relevant role in explaining higher education choices among low-status group members

    Climate change adaptation and cross-sectoral policy coherence in southern Africa

    Get PDF
    To be effective, climate change adaptation needs to be mainstreamed across multiple sectors and greater policy coherence is essential. Using the cases of Malawi, Tanzania and Zambia, this paper investigates the extent of coherence in national policies across the water and agriculture sectors and to climate change adaptation goals outlined in national development plans. A two-pronged qualitative approach is applied using Qualitative Document Analysis of relevant policies and plans, combined with expert interviews from non-government actors in each country. Findings show that sector policies have differing degrees of coherence on climate change adaptation, currently being strongest in Zambia and weakest in Tanzania. We also identify that sectoral policies remain more coherent in addressing immediate-term disaster management issues of floods and droughts rather than longer-term strategies for climate adaptation. Coherence between sector and climate policies and strategies is strongest when the latter has been more recently developed. However to date, this has largely been achieved by repackaging of existing sectoral policy statements into climate policies drafted by external consultants to meet international reporting needs and not by the establishment of new connections between national sectoral planning processes. For more effective mainstreaming of climate change adaptation, governments need to actively embrace longer-term cross-sectoral planning through cross-Ministerial structures, such as initiated through Zambia’s Interim Climate Change Secretariat, to foster greater policy coherence and integrated adaptation planning

    Outreach:Impact on Skills and Future Careers of Postgraduate Practitioners Working with the Bristol ChemLabS Centre for Excellence in Teaching and Learning

    Get PDF
    Postgraduate engagement in delivering outreach activities is more commonplace than it once was. However, the impact on postgraduate students (typically studying for a Ph.D. degree) of participating in the delivery of these outreach activities has rarely, if ever, been recorded. The Bristol ChemLabS Outreach program has been running for ca. 17 years, and in that time, many postgraduate students have been involved (approximately 500), with around 250 typically for up to 3 years. We sought to investigate the impact of outreach engagement on postgraduate alumni who were involved in the program for over 3 years (32) and how the experiences and training of the outreach program had impacted on their careers postgraduation. Thirty of the 32 postgraduates engaged and ∌70% reported that their outreach experience had influenced their decision making on future careers. Many respondents reported that the skills and experiences gained through outreach participation had contributed to success in applying for and interviewing at their future employers. All respondents reported that outreach had helped them to develop key skills that were valued in the workplace, specifically, communication, teamwork, organizational skills, time planning, event planning, and event management. Rather than a pleasant distraction or an opportunity to supplement income, all participants noted that they felt there were many additional benefits and that this was time well spent. Outreach should not be viewed as a distraction to science research but rather an important enhancement to it provided that the program is well constructed and seeks to develop those delivering the outreach activities

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Baseline factors associated with early and late death in intracerebral haemorrhage survivors

    Get PDF
    Background and purpose: The aim of this study was to determine whether early and late death are associated with different baseline factors in intracerebral haemorrhage (ICH) survivors. Methods: This was a secondary analysis of the multicentre prospective observational CROMIS‐2 ICH study. Death was defined as ‘early’ if occurring within 6 months of study entry and ‘late’ if occurring after this time point. Results: In our cohort (n = 1094), there were 306 deaths (per 100 patient‐years: absolute event rate, 11.7; 95% confidence intervals, 10.5–13.1); 156 were ‘early’ and 150 ‘late’. In multivariable analyses, early death was independently associated with age [per year increase; hazard ratio (HR), 1.05, P = 0.003], history of hypertension (HR, 1.89, P = 0.038), pre‐event modified Rankin scale score (per point increase; HR, 1.41, P < 0.0001), admission National Institutes of Health Stroke Scale score (per point increase; HR, 1.11, P < 0.0001) and haemorrhage volume >60 mL (HR, 4.08, P < 0.0001). Late death showed independent associations with age (per year increase; HR, 1.04, P = 0.003), pre‐event modified Rankin scale score (per point increase; HR, 1.42, P = 0.001), prior anticoagulant use (HR, 2.13, P = 0.028) and the presence of intraventricular extension (HR, 1.73, P = 0.033) in multivariable analyses. In further analyses where time was treated as continuous (rather than dichotomized), the HR of previous cerebral ischaemic events increased with time, whereas HRs for Glasgow Coma Scale score, National Institutes of Health Stroke Scale score and ICH volume decreased over time. Conclusions: We provide new evidence that not all baseline factors associated with early mortality after ICH are associated with mortality after 6 months and that the effects of baseline variables change over time. Our findings could help design better prognostic scores for later death after ICH

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
    • 

    corecore