9 research outputs found
Asynchroner CMOS–Bildsensor mit erweitertem Dynamikbereich und Unterdrückung zeitlich redundanter Daten: Asynchroner CMOS–Bildsensor mit erweitertem Dynamikbereich und Unterdrückung zeitlich redundanter Daten
Diese Arbeit befasst sich mit dem Entwurf eines asynchron arbeitenden, zeitbasierten CMOS–Bildsensors mit erhöhtem Dynamikbereich und Unterdrückung zeitlich redundanter Daten.
Aufgrund immer kleinerer Strukturgrößen in modernen Prozessen zur Fertigung von Halbleitern und einer gleichzeitig physikalisch bedingt immer geringeren Skalierbarkeit konventioneller Bildsensoren wird es zunehmend möglich und praktikabel, Signalverarbeitungsansätze auf Pixelebene zu implementieren. Unter Berücksichtigung dieser Entwicklungen befasst sich die folgende Arbeit mit dem Entwurf eines neuartigen CMOS–Bildsensors mit nahezu vollständiger Unterdrückung zeitlich redundanter Daten auf Pixelebene. Jedes photosensitive Element in der Matrix arbeitet dabei vollkommen autonom. Es detektiert selbständig Änderungen in der Bestrahlung und gibt den Absolutwert nur beim Auftreten einer solchen Änderung mittels asynchroner Signalisierung nach außen. Darüber hinaus zeichnet sich der entwickelte Bildaufnehmer durch einen, gegenüber herkömmlichen Bildsensoren, deutlich erhöhten Dynamikbereich und eine niedrige Energieaufnahme aus, wodurch das Prinzip besonders für die Verwendung in Systemen für den mobilen Einsatz oder zur Durchführung von Überwachungsaufgaben geeignet ist.
Die Realisierbarkeit des Konzepts wurde durch die erfolgreiche Implementierung eines entsprechenden Bildaufnehmers in einem Standard–CMOS–Prozess nachgewiesen. Durch die Größe des Designs von 304 x 240 Bildelementen, die den Umfang üblicher Prototypen-Realisierungen deutlich übersteigt, konnte speziell die Anwendbarkeit im Bereich größerer Sensorfelder gezeigt werden. Der Schaltkreis wurde erfolgreich getestet, wobei sowohl das Gesamtsystem als auch einzelne Schaltungsteile messtechnisch analysiert worden sind. Die nachgewiesene Bildqualität deckt sich dabei in guter Näherung mit den theoretischen Vorbetrachtungen
Sensor Artificial Intelligence and its Application to Space Systems - A White Paper
A white paper resulting from the 1st Workshop on Sensor AI, April 2020; organized by DLR and the ECDF.Information and communication technologies have accompanied our everyday life for years. A steadily increasing number of computers, cameras, mobile devices, etc. generate more and more data, but at the same time we realize that the data can only partially be analyzed with classical approaches. The research and development of methods based on artificial intelligence (AI) made enormous progress in the area of interpretability of data in recent years. With growing experience, both, the potential and limitations of these new technologies are increasingly better understood. Typically, AI approaches start with the data from which information and directions for action are derived. However, the circumstances under which such data are collected and how they change over time are rarely considered. A closer look at the sensors and their physical properties within AI approaches will lead to more robust and widely applicable algorithms. This holistic approach which considers entire signal chains from the origin to a data product, "Sensor AI", is a highly relevant topic with great potential. It will play a decisive role in autonomous driving as well as in areas of automated production, predictive maintenance or space research. The goal of this white paper is to establish "Sensor AI" as a dedicated research topic. We want to exchange knowledge on the current state-of-the-art on Sensor AI, to identify synergies among research groups and thus boost the collaboration in this key technology for science and industry
Asynchroner CMOS–Bildsensor mit erweitertem Dynamikbereich und Unterdrückung zeitlich redundanter Daten: Asynchroner CMOS–Bildsensor mit erweitertem Dynamikbereich und Unterdrückung zeitlich redundanter Daten
Diese Arbeit befasst sich mit dem Entwurf eines asynchron arbeitenden, zeitbasierten CMOS–Bildsensors mit erhöhtem Dynamikbereich und Unterdrückung zeitlich redundanter Daten.
Aufgrund immer kleinerer Strukturgrößen in modernen Prozessen zur Fertigung von Halbleitern und einer gleichzeitig physikalisch bedingt immer geringeren Skalierbarkeit konventioneller Bildsensoren wird es zunehmend möglich und praktikabel, Signalverarbeitungsansätze auf Pixelebene zu implementieren. Unter Berücksichtigung dieser Entwicklungen befasst sich die folgende Arbeit mit dem Entwurf eines neuartigen CMOS–Bildsensors mit nahezu vollständiger Unterdrückung zeitlich redundanter Daten auf Pixelebene. Jedes photosensitive Element in der Matrix arbeitet dabei vollkommen autonom. Es detektiert selbständig Änderungen in der Bestrahlung und gibt den Absolutwert nur beim Auftreten einer solchen Änderung mittels asynchroner Signalisierung nach außen. Darüber hinaus zeichnet sich der entwickelte Bildaufnehmer durch einen, gegenüber herkömmlichen Bildsensoren, deutlich erhöhten Dynamikbereich und eine niedrige Energieaufnahme aus, wodurch das Prinzip besonders für die Verwendung in Systemen für den mobilen Einsatz oder zur Durchführung von Überwachungsaufgaben geeignet ist.
Die Realisierbarkeit des Konzepts wurde durch die erfolgreiche Implementierung eines entsprechenden Bildaufnehmers in einem Standard–CMOS–Prozess nachgewiesen. Durch die Größe des Designs von 304 x 240 Bildelementen, die den Umfang üblicher Prototypen-Realisierungen deutlich übersteigt, konnte speziell die Anwendbarkeit im Bereich größerer Sensorfelder gezeigt werden. Der Schaltkreis wurde erfolgreich getestet, wobei sowohl das Gesamtsystem als auch einzelne Schaltungsteile messtechnisch analysiert worden sind. Die nachgewiesene Bildqualität deckt sich dabei in guter Näherung mit den theoretischen Vorbetrachtungen
Asynchroner CMOS–Bildsensor mit erweitertem Dynamikbereich und Unterdrückung zeitlich redundanter Daten Asynchroner CMOS–Bildsensor mit erweitertem Dynamikbereich und Unterdrückung zeitlich redundanter Daten
Diese Arbeit befasst sich mit dem Entwurf eines asynchron arbeitenden, zeitbasierten CMOS–Bildsensors mit erhöhtem Dynamikbereich und Unterdrückung zeitlich redundanter Daten.
Aufgrund immer kleinerer Strukturgrößen in modernen Prozessen zur Fertigung von Halbleitern und einer gleichzeitig physikalisch bedingt immer geringeren Skalierbarkeit konventioneller Bildsensoren wird es zunehmend möglich und praktikabel, Signalverarbeitungsansätze auf Pixelebene zu implementieren. Unter Berücksichtigung dieser Entwicklungen befasst sich die folgende Arbeit mit dem Entwurf eines neuartigen CMOS–Bildsensors mit nahezu vollständiger Unterdrückung zeitlich redundanter Daten auf Pixelebene. Jedes photosensitive Element in der Matrix arbeitet dabei vollkommen autonom. Es detektiert selbständig Änderungen in der Bestrahlung und gibt den Absolutwert nur beim Auftreten einer solchen Änderung mittels asynchroner Signalisierung nach außen. Darüber hinaus zeichnet sich der entwickelte Bildaufnehmer durch einen, gegenüber herkömmlichen Bildsensoren, deutlich erhöhten Dynamikbereich und eine niedrige Energieaufnahme aus, wodurch das Prinzip besonders für die Verwendung in Systemen für den mobilen Einsatz oder zur Durchführung von Überwachungsaufgaben geeignet ist.
Die Realisierbarkeit des Konzepts wurde durch die erfolgreiche Implementierung eines entsprechenden Bildaufnehmers in einem Standard–CMOS–Prozess nachgewiesen. Durch die Größe des Designs von 304 x 240 Bildelementen, die den Umfang üblicher Prototypen-Realisierungen deutlich übersteigt, konnte speziell die Anwendbarkeit im Bereich größerer Sensorfelder gezeigt werden. Der Schaltkreis wurde erfolgreich getestet, wobei sowohl das Gesamtsystem als auch einzelne Schaltungsteile messtechnisch analysiert worden sind. Die nachgewiesene Bildqualität deckt sich dabei in guter Näherung mit den theoretischen Vorbetrachtungen
Pulse-Modulation Imaging-Review and Performance Analysis
In time-domain or pulse-modulation (PM) imaging, the incident light intensity is not encoded in amounts of charge, voltage, or current as it is in conventional image sensors. Instead, the image data are represented by the timing of pulses or pulse edges. This method of visual information encoding optimizes the phototransduction individually for each pixel by abstaining from imposing a fixed integration time for the entire array. Exceptionally high dynamic range (DR) and improved signal-to-noise ratio (SNR) are immediate benefits of this approach. In particular, DR is no longer limited by the power-supply rails as in conventional complementary metal-oxide semiconductor (CMOS) complementary metal-oxide semiconductor active pixel sensors, thus providing relative immunity to the supply-voltage scaling of modern CMOS technologies. In addition, PM imaging naturally supports pixel-parallel analog-to-digital conversion, thereby enabling high temporal resolution/frame rates or an asynchronous event-based array readout. The applications of PM imaging in emerging areas, such as sensor network, wireless endoscopy, retinal prosthesis, polarization imaging, and energy harvesting are surveyed to demonstrate the effectiveness of PM imaging in low-power, high-performance machine vision, and biomedical applications of the future. The evolving design innovations made in PM imaging, such as high-speed arbitration circuits and ultra-compact processing elements, are expected to have even wider impacts in disciplines beyond CMOS image sensors. This paper thoroughly reviews and classifies all common PM image sensor architectures. Analytical models and a universal figure of merit-image quality and dynamic range to energy complexity factor are proposed to quantitatively assess different PM imagers across the entire spectrum of PM architectures
ANALOG IMPLEMENTATION FOR NETWORKS OF INTEGRATE-AND-FIRE NEURONS WITH ADAPTIVE LOCAL CONNECTIVITY
Abstract. An analog VLSI implementation for pulse coupled neural networks of leakage free integrate-and-fire neurons is presented. The network can be used for rubust signal processing and image processing taks such as segmentation. Synchronity is achieved by adaptive local connections only. Implementation of both integrateand-fire neurons and adpative weights is developed in detail. The synchronisation capabilities are verified by simulations
Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: population structuring and multiple infections
Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R.cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R.cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R.cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R.cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R.cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors
Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity
In recent years, the field of catalysis has experienced an astonishing transformation, driven in part by more demanding environmental standards and critical societal and industrial needs such as the search for alternative energy sources. Thanks to the advent of nanotechnology, major steps have been made towards the rational design of novel catalysts. Striking new catalytic properties, including greatly enhanced reactivities and selectivities, have been reported for nanoparticle (NP) catalysts as compared to their bulk counterparts. However, in order to harness the power of these nanocatalysts, a detailed understanding of the origin of their enhanced performance is needed. The present review focuses on the role of the NP size and shape on chemisorption and catalytic performance. Since homogeneity in NP size and shape is a prerequisite for the understanding of structure–reactivity correlations, we first review different synthesis methods that result in narrow NP size distributions and shape controlled NPs. Next, size-dependent phenomena which influence the chemical reactivity of NPs, including quantum size-effects and the presence of under-coordinated surface atoms are examined. The effect of the NP shape on catalytic performance is discussed and explained based on the existence of different atomic structures on the NP surface with distinct chemisorption properties. The influence of additional factors, such as the oxidation state of the NPs and NP–support interactions, is also considered in the frame of the size- and shape-dependency that these phenomena present. Ultimately, our review highlights the importance of achieving a systematic understanding of the factors that control the activity and selectivity of a catalyst in order to avoid trial and error methods in the rational design of the new generation of nanocatalysts with properties tunable at the atomic level