133 research outputs found

    High resolution climate and vegetation simulations of the Mid-Pliocene, a model-data comparison over western Europe and the Mediterranean region

    Get PDF
    International audienceHere we perform a detailed comparison between climate model results and climate reconstructions in western Europe and the Mediterranean area for the mid-Piacenzian warm interval (ca 3 Myr ago) of the Late Pliocene epoch. This region is particularly well suited for such a comparison as several quantitative climate estimates from local pollen records are available. They show evidence for temperatures significantly warmer than today over the whole area, mean annual precipitation higher in northwestern Europe and equivalent to modern values in its southwestern part. To improve our comparison, we have performed high resolution simulations of the mid-Piacenzian climate using the LMDz atmospheric general circulation model (AGCM) with a stretched grid which allows a finer resolution over Europe. In a first step, we applied the PRISM2 (Pliocene Research, Interpretation, and Synoptic Mapping) boundary conditions except that we used modern terrestrial vegetation. Second, we simulated the vegetation for this period by forcing the ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) dynamic global vegetation model (DGVM) with the climatic outputs from the AGCM. We then supplied this simulated terrestrial vegetation cover as an additional boundary condition in a second AGCM run. This gives us the opportunity to investigate the model's sensitivity to the simulated vegetation changes in a global warming context

    Neanderthal Extinction by Competitive Exclusion

    Get PDF
    International audienceBackground: Despite a long history of investigation, considerable debate revolves around whether Neanderthals became extinct because of climate change or competition with anatomically modern humans (AMH). Methodology/Principal Findings: We apply a new methodology integrating archaeological and chronological data with high-resolution paleoclimatic simulations to define eco-cultural niches associated with Neanderthal and AMH adaptive systems during alternating cold and mild phases of Marine Isotope Stage 3. Our results indicate that Neanderthals and AMH exploited similar niches, and may have continued to do so in the absence of contact. Conclusions/Significance: The southerly contraction of Neanderthal range in southwestern Europe during Greenland Interstadial 8 was not due to climate change or a change in adaptation, but rather concurrent AMH geographic expansion appears to have produced competition that led to Neanderthal extinction

    The Palaeolithic occupation of southern Alentejo: the Sado

    Get PDF
    ABSTRACT The Sado River Drainage Survey project (2004-2008) was designed to fill a significant gap in our knowledge of the prehistory of Portugal. Southern Alentejo constitutes nearly one third of the total land mass of continental Portugal, but has received comparatively little attention from Palaeolithic archaeologists. Practically nothing was known about the prehistory of the Sado River basin, which includes the southern Alentejo plain, before now. The results of the Sado River Drainage Survey (SRDS) indicate that the Sado River basin was likely occupied at low population densities during the Middle Palaeolithic. There is some evidence for a Lower Palaeolithic presence but little or no evidence of an Upper Palaeolithic occupation. The emerging pattern suggests either an occupational hiatus or a major shift in settlement pattern towards the end of the Middle Palaeolithic. Possible explanations for this pattern, including aridification driven by climate change, are explored here

    Klima. 30 pitanja za razumijevanje Konferencije u Parizu (Pascal Canfin i Peter Staime)

    Get PDF
    The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate changes. Numerical climate models are useful for investigating mechanisms that underpin the climate change events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 000 years. Here, we present the design of a coordinated Core experiment over the period 21–9 thousand years before present (ka) with time-varying orbital forcing, greenhouse gases, ice sheets and other geographical changes. A choice of two ice sheet reconstructions is given, and we make recommendations for prescribing ice meltwater (or not) in the Core experiment. Additional focussed simulations will also be coordinated on an ad hoc basis by the working group, for example to investigate more thoroughly the effect of ice meltwater on climate system evolution, and to examine the uncertainty in other forcings. Some of these focussed simulations will target shorter durations around specific events in order to understand them in more detail and allow for the more computationally expensive models to take part

    Progress in paleoclimate modeling

    Get PDF
    International audienceThis paper briefly surveys areas of paleoclimate modeling notable for recent progress. New ideas, including hypotheses giving a pivotal role to sea ice, have revitalized the low-order models used to simulate the time evolution of glacial cycles through the Pleistocene, a prohibitive length of time for comprehensive general circulation models (GCMs). In a recent breakthrough, however, GCMs have succeeded in simulating the onset of glaciations. This occurs at times (most recently, 115 kyr B.P.) when high northern latitudes are cold enough to maintain a snow cover and tropical latitudes are warm, enhancing the moisture source. More generally, the improvement in models has allowed simulations of key periods such as the Last Glacial Maximum and the mid-Holocene that compare more favorably and in more detail with paleoproxy data. These models now simulate ENSO cycles, and some of them have been shown to reproduce the reduction of ENSO activity observed in the early to middle Holocene. Modeling studies have demonstrated that the reduction is a response to the altered orbital configuration at that time. An urgent challenge for paleoclimate modeling is to explain and to simulate the abrupt changes observed during glacial epochs (i.e., Dansgaard-Oescher cycles, Heinrich events, and the Younger Dryas). Efforts have begun to simulate the last millennium. Over this time the forcing due to orbital variations is less important than the radiance changes due to volcanic eruptions and variations in solar output. Simulations of these natural variations test the models relied on for future climate change projections. They provide better estimates of the internal and naturally forced variability at centennial time scales, elucidating how unusual the recent global temperature trends are

    The PMIP4 contribution to CMIP6 – Part 4: scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments

    Get PDF
    The Last Glacial Maximum (LGM, 21 000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to the present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional (Tier 2) sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalize on the relative abundance of paleoenvironmental observations and quantitative climate reconstructions already available for the LGM
    corecore