93 research outputs found

    Distinct roles of nonmuscle myosin ii isoforms for establishing tension and elasticity during cell morphodynamics

    Get PDF
    Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis

    Edge Pressures Obtained Using FEM and Half-Space: A Study of Truncated Contact Ellipses

    Get PDF
    In rolling or gear contacts, truncation of the contact ellipse can occur, for example, when an undercut extends into the contact area. For an elastic calculation approach, the edge constitutes a mathematical singularity, which is revealed by a theoretically infinitely high pressure peak. However, when elastic–plastic material behavior is taken into account, the pressure peak is limited by local hardening and yielding of the material, leading to plastic deformations. As a result, those calculations are rather challenging and the results partly unexpected due to the discontinuity contained in the geometry. Nevertheless, to the authors’ knowledge, hardly any published studies exist on elastic–plastic simulations of truncated contact ellipses. Therefore, a numerical study concerning the contact of a rigid ball with an elastic–plastic plane is presented. Due to an undercut in the plane, a quarter of the theoretical Hertzian contact ellipse is cut off. The aim of the study is to investigate the influence of the undercut angle on the pressure distribution and the elastic and plastic deformation at the edge. The use of FEM shows that the undercut angle has a significant effect on the characteristics of the contact. The results obtained using FEM are then used as a reference for comparison with a semi-analytical method (SAM). It is shown that the SAM, based on the half-space, provides comparable results only for very small undercut angles

    Computational Fluid Dynamics in Cardiovascular Disease

    Get PDF
    Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and progression of disease and for establishing and creating treatment modalities in the cardiovascular field

    Computational Fluid Dynamics in Cardiovascular Disease

    Get PDF
    Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and progression of disease and for establishing and creating treatment modalities in the cardiovascular field

    Do Leaf Cutting Ants Cut Undetected? Testing the Effect of Ant-Induced Plant Defences on Foraging Decisions in Atta colombica

    Get PDF
    Leaf-cutting ants (LCAs) are polyphagous, yet highly selective herbivores. The factors that govern their selection of food plants, however, remain poorly understood. We hypothesized that the induction of anti-herbivore defences by attacked food plants, which are toxic to either ants or their mutualistic fungus, should significantly affect the ants' foraging behaviour. To test this “induced defence hypothesis,” we used lima bean (Phaseolus lunatus), a plant that emits many volatile organic compounds (VOCs) upon herbivore attack with known anti-fungal or ant-repellent effects. Our results provide three important insights into the foraging ecology of LCAs. First, leaf-cutting by Atta ants can induce plant defences: Lima bean plants that were repeatedly exposed to foraging workers of Atta colombica over a period of three days emitted significantly more VOCs than undamaged control plants. Second, the level to which a plant has induced its anti-herbivore defences can affect the LCAs' foraging behaviour: In dual choice bioassays, foragers discriminated control plants from plants that have been damaged mechanically or by LCAs 24 h ago. In contrast, strong induction levels of plants after treatment with the plant hormone jasmonic acid or three days of LCA feeding strongly repelled LCA foragers relative to undamaged control plants. Third, the LCA-specific mode of damaging leaves allows them to remove larger quantities of leaf material before being recognized by the plant: While leaf loss of approximately 15% due to a chewing herbivore (coccinelid beetle) was sufficient to significantly increase VOC emission levels after 24 h, the removal of even 20% of a plant's leaf area within 20 min by LCAs did not affect its VOC emission rate after 24 h. Taken together, our results support the “induced defence hypothesis” and provide first empirical evidence that the foraging behaviour of LCAs is affected by the induction of plant defence responses

    A systematic approach to the evaluation of the coronary microcirculation using bolus thermodilution: CATH CMD

    Get PDF
    Coronary microvascular dysfunction (CMD) can cause myocardial ischemia in patients presenting with angina without obstructive coronary artery disease (ANOCA). Evaluating for CMD by using the thermodilution technique offers a widely accessible means of assessing microvascular resistance. Through this technique, 2 validated indices, namely coronary flow reserve and the index of microcirculatory resistance, can be computed, facilitating investigation of the coronary microcirculation. The index of microcirculatory resistance specifically estimates minimum achievable microvascular resistance within the coronary microcirculation. We aim to review the bolus thermodilution method, outlining the fundamental steps for conducting measurements and introducing an algorithmic approach (CATH CMD) to systematically evaluate the coronary microcirculation. Embracing a standardized approach, exemplified by the CATH CMD algorithm, will facilitate adoption of this technique and streamline the diagnosis of CMD

    The origin of low-surface-brightness galaxies in the dwarf regime

    Get PDF
    Low-surface-brightness galaxies (LSBGs) -- defined as systems that are fainter than the surface-brightness limits of past wide-area surveys -- form the overwhelming majority of galaxies in the dwarf regime (M* < 10^9 MSun). Using NewHorizon, a high-resolution cosmological simulation, we study the origin of LSBGs and explain why LSBGs at similar stellar mass show the large observed spread in surface brightness. New Horizon galaxies populate a well-defined locus in the surface brightness -- stellar mass plane, with a spread of ~3 mag arcsec^-2, in agreement with deep SDSS Stripe data. Galaxies with fainter surface brightnesses today are born in regions of higher dark-matter density. This results in faster gas accretion and more intense star formation at early epochs. The stronger resultant supernova feedback flattens gas profiles at a faster rate which, in turn, creates shallower stellar profiles (i.e. more diffuse systems) more rapidly. As star formation declines towards late epochs (z<1), the larger tidal perturbations and ram pressure experienced by these systems (due to their denser local environments) accelerate the divergence in surface brightness, by increasing their effective radii and reducing star formation respectively. A small minority of dwarfs depart from the main locus towards high surface brightnesses, making them detectable in past wide surveys. These systems have anomalously high star-formation rates, triggered by recent, fly-by or merger-driven starbursts. We note that objects considered extreme/anomalous at the depth of current datasets, e.g. `ultra-diffuse galaxies', actually dominate the predicted dwarf population and will be routinely visible in future surveys like LSST

    Environment-dependent experiences and physiological states shape the preference behavior and personality of two leaf beetle species

    No full text
    Tremmel M. Environment-dependent experiences and physiological states shape the preference behavior and personality of two leaf beetle species. Bielefeld; 2013
    corecore