3,319 research outputs found
Recommended from our members
Retrospective model-based inference guides model-free credit assignment
An extensive reinforcement learning literature shows that organisms assign credit efficiently, even under conditions of state uncertainty. However, little is known about credit-assignment when state uncertainty is subsequently resolved. Here, we address this problem within the framework of an interaction between model-free (MF) and model-based (MB) control systems. We present and support experimentally a theory of MB retrospective-inference. Within this framework, a MB system resolves uncertainty that prevailed when actions were taken thus guiding an MF credit-assignment. Using a task in which there was initial uncertainty about the lotteries that were chosen, we found that when participants’ momentary uncertainty about which lottery had generated an outcome was resolved by provision of subsequent information, participants preferentially assigned credit within a MF system to the lottery they retrospectively inferred was responsible for this outcome. These findings extend our knowledge about the range of MB functions and the scope of system interactions
A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II
During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel
The combined strengthening effects of grain refinement and high precipitated
volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected
to SPD processing prior to aging treatment were investigated by atom probe
tomography and scanning transmission electron microscopy. It was shown that the
refinement of the microstructure affects the precipitation kinetics and the
spatial distribution of the secondary hardening intermetallic phase, which was
observed to nucleate heterogeneously on dislocations and sub-grain boundaries.
It was revealed that alloys successively subjected to these two strengthening
mechanisms exhibit a lower increase in mechanical strength than a simple
estimation based on the summation of the two individual strengthening
mechanisms
Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer
Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH
Theory of Multidimensional Solitons
We review a number of topics germane to higher-dimensional solitons in
Bose-Einstein condensates. For dark solitons, we discuss dark band and planar
solitons; ring dark solitons and spherical shell solitons; solitary waves in
restricted geometries; vortex rings and rarefaction pulses; and multi-component
Bose-Einstein condensates. For bright solitons, we discuss instability,
stability, and metastability; bright soliton engineering, including pulsed atom
lasers; solitons in a thermal bath; soliton-soliton interactions; and bright
ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P.
G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez
(Springer-Verlag
Shot noise in mesoscopic systems
This is a review of shot noise, the time-dependent fluctuations in the
electrical current due to the discreteness of the electron charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson process
as a result of correlations in the electron transmission imposed by the Pauli
principle. This suppression takes on simple universal values in a symmetric
double-barrier junction (suppression factor 1/2), a disordered metal (factor
1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect
on this shot-noise suppression, while thermalization of the electrons due to
electron-electron scattering increases the shot noise slightly. Sub-Poissonian
shot noise has been observed experimentally. So far unobserved phenomena
involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic
Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn,
NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors
Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects
Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics
Roughness-insensitive and electrically controllable magnetization at the
(0001) surface of antiferromagnetic chromia is observed using magnetometry and
spin-resolved photoemission measurements and explained by the interplay of
surface termination and magnetic ordering. Further, this surface in placed in
proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across
the interface between chromia and Co/Pd induces an electrically controllable
exchange bias in the Co/Pd film, which enables a reversible isothermal (at room
temperature) shift of the global magnetic hysteresis loop of the Co/Pd film
along the magnetic field axis between negative and positive values. These
results reveal the potential of magnetoelectric chromia for spintronic
applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted
to Nature Material
Building Babies - Chapter 16
In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1)
Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg
The dependence of dijet production on photon virtuality in ep collisions at HERA
The dependence of dijet production on the virtuality of the exchanged photon,
Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 <
2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of
38.6 pb^-1.
Dijet cross sections were measured for jets with transverse energy E_T^jet >
7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame
in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon
momentum entering the hard process, was used to enhance the sensitivity of the
measurement to the photon structure. The Q^2 dependence of the ratio of low- to
high-xg^obs events was measured.
Next-to-leading-order QCD predictions were found to generally underestimate
the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models
based on leading-logarithmic parton-showers, using a partonic structure for the
photon which falls smoothly with increasing Q^2, provide a qualitative
description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
- …
