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Abstract. This is a review of shot noise, the time-dependent fluctuations in
the electrical current due to the discreteness of the electron Charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson pro-
cess äs a result of correlations in the electron transmission imposed by the
Pauli principle. This suppression takes on simple universal values in a Sym-
metrie double-barrier junction (suppression factor 5), a disordered metal
(factor |), and a chaotic cavity (factor |). Loss of phase coherence has no
effect on this shot-noise suppression, while thermalization of the electrons
due to electron-electron scattering increases the shot noise slightly. Sub-
Poissonian shot noise has been observed experimentally. So far unobserved
phenomena involve the interplay of shot noise with the Aharonov-Bohm
effect, Andreev reflection, and the fractional quantum Hall effect.

1. Introduction

1.1. CURRENT FLUCTUATIONS

In 1918 Schottky [1] reported that in ideal vacuum tubes, where all sources
of spurious noise had been eliminated, there remained two types of noise
in the electrical current, described by him äs the Wärmeeffekt and the
Schroteffekt. The first type of noise became known äs Johnson-Nyquist
noise (after the experimentalist [2] and the theorist [3] who investigated it),
or simply thermal noise. It is due to the thermal motion of the electrons
and occurs in any conductor. The second type of noise is called shot noise,
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caused by the discreteness of the charge of the carriers of the electrical
current. Not all conductors exhibit shot noise.

Noise is characterized by its spectral density or power spectrum P(u>),
which is the Fourier transform at frequency ω of the current-current corre-
lation function [4, 5],

oo

P (ω) =2 i dtelüjt(AI(t + ΐ0)Δ/(ί0)) . (1)
J

— 00

Here Δ/(ί) denotes the time-dependent fiuctuations in the current at a
given voltage V and temperature T. The brackets (· · ·} indicate an ensemble
average or, equivalently, an average over the initial time ίο. Both thermal
and shot noise have a white power spectrum — that is, the noise power
does not depend on ω over a very wide frequency ränge. Thermal noise
(V = 0, T ^ 0) is directly related to the conductance G by the fluctuation-
dissipation theorem [6],

P = 4kBTG , (2)

äs long äs Ηώ <C kßT. Therefore, the thermal noise of a conductor does not
give any new Information.

Shot noise (V φ 0, T = 0) is more interesting, because it gives Infor-
mation on the temporal correlation of the electrons, which is not contained
in the conductance. In devices such äs tunnel junctions, Schottky barrier
diodes, p-n junctions, and thermionic vacuum diodes [4], the electrons are
transmitted randomly and independently of each other. The transfer of
electrons can be described by Poisson statistics, which is used to analyze
events that are uncorrelated in time. For these devices the shot noise has
its maximum value

P = tel = -^Poisson 5 (,")

proportional to the time-averaged current /. (We assume I > 0 and V > 0
throughout this review.) Equation (3) is valid for ω < r"1, with r the
width of a one-electron current pulse. For higher frequencies the shot noise
vanishes. Correlations suppress the low-frequency shot noise below Ppoisson·
One source of correlations, operative even for non-interacting electrons, is
the Pauli principle, which forbids multiple occupancy of the same single-
particle state. A typical example is a ballistic point contact in a metal,
where P = 0 because the stream of electrons is completely correlated by the
Pauli principle in the absence of impurity scattering. Macroscopic, metallic
conductors have zero shot noise for a different reason, namely that inelastic
electron-phonon scattering averages out the current fiuctuations.

Progress in nanofabrication technology has revived the interest in shot
noise, because nanostructures allow measurements to be made on "meso-
scopic" length scales that were previously inaccessible. The mesoscopic
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Figure 1. Schematic representation of the transport through the conductor. Incoming
states (I) are scattered into outgoing states (O), by a scattering region (dashed). A cross
section in lead l and its coordinates are indicated.

length scale is much greater than atomic dimensions, but small compared
to the scattering lengths associated with various inelastic processes. Meso-
scopic Systems have been studied extensively through their conductance
[7, 8, 9, 10]. Noise measurements are much more difficult, but the sensitiv-
ity of the experiments has made a remarkable progress in the last years.
Some theoretical predictions have been observed, while others still remain
an experimental challenge. This article is a review of the present Status of
the field, with an emphasis on the theoretical developments. We will focus
on the scattering approach to electron transport, which provides a unified
description of both conductance and shot noise. For earlier reviews, see
Refs. [11, 12, 13]. For brief commentaries, see Refs. [14, 15].

1.2. SCATTERING THEORY

In his 1957 paper [16] Landauer discussed the problem of electrical conduc-
tion äs a scattering problem. This has become a key concept in mesoscopic
physics [7, 8]. The conductor is modeled äs a scattering region, connected
to electron reservoirs. The electrons inside each reservoir are assumed to be
in thermal equilibrium. Incoming states, occupied according to the Fermi-
Dirac distribution function, are scattered into outgoing states. At low tem-
peratures the conductance is fully determined by the transmission matrix
of electrons at the Fermi level. The two-terminal Landauer formula [7, 17]
and its multi-terminal generalization [18, 19, 20, 21] constitute a general
framework for the calculation of the conductance of a phase-coherent sam-
ple. A scattering theory of the noise properties of mesoscopic conductors
was derived in Refs. [22, 23, 24, 25, 26, 27, 28]. The basic result is a rela-
tionship between the shot-noise power and the transmission matrix at the
Fermi level, analogous to the Landauer formula for the conductance. Here
we review the derivation of this result, following closely Büttiker's work
[26, 28].

Two leads are connected to an arbitrary scattering region (see Fig. 1).
Each lead contains N incoming and N outgoing modes at energy ε. We
assume only elastic scattering so that energy is conserved. The incoming
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and outgoing modes are related by a 2N χ 2Ν scattering matrix S

where /i,0i,/2) 02 are the JV-component vectors denoting the amplitudes
of the incoming (/) and outgoing (O) modes in lead l and lead 2. The
scattering matrix can be decomposed in N χ Ν reflection and transmission
matrices, sn si2s= s2i s22 \ t r

where the N χ Ν matrix Sba contains the amplitudes Sbn,am from incoming
mode m in lead α to outgoing mode n in lead b. Because of flux conservation
S is a unitary matrix. Moreover, in the presence of time-reversal symmetry
S is Symmetrie.

The current operator in lead l is given by

' Ιαβ(ε, ε') 4 (e) aß(e') e^~^/h , (6)
a<ß o o

where α£,(ε) [αα(ε)] is the creation [annihilation] operator of scattering state
^>a(r, ε). We have introduced the indices a = (o, m), β = (b,n) and the
coordinate r = (a;,y). The matrix element Ιαβ(ε,ε') is determined by the
value of the current at cross section Si in lead l ,

Ι β ( ε , ε ' ) = i !άγ{ψα(τ,ε)[ϋχψβ(τ,ε')]*+ψ*β(τ,ε')ϋχψα(τ,ε)} . (7)

Here, vx is the velocity operator in the ic-direction. At equal energies, Eq.
(7) simplifies to [26, 28]

N

p=l

The average current follows from

(α^(ε)αβ(ε')) = δαβδ(ε-ε')/α(ε), (9)

where fa is the Fermi-Dirac distribution function in reservoir a:

/ι (ε) = f(e-EF-eV), (lOa)

/2(ε) = f(e-EF), (lOb)

/(x) = [l + expia/ÄBT)]-1, (lOc)
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with Fermi energy Ep. The result is
00 00

tf(*)> = ιΣ, jfcUW^B) = £/&[/! (e) -/2(ε)] Trt(£)tt(e) , (11)
a 0 0

where we have substituted Eq. (8) and used the unitarity of S. The linear-
response conductance, G = limv->-o(I)/V, becomes

(-|£)Tr1:(e)tt(e), (12)

o
which at zero temperature simplifies to the Landauer formula

n=I

Here t is taken at E p and Tn 6 [0, 1] is an eigenvalue of 1 1^. The conductance
is thus fully determined by the transmission eigenvalues. Knowledge of the
transmission eigenstates, each of which can be a complicated superposition
of incoming modes, is not required.

In order to evaluate the shot-noise power we substitute the current
operator (6) into Eq. (1) and determine the expectation value. We use the
formula [28]

(a[a2a\a^j - (a\a^(a\a^ = ̂ 14^23/1 (l - h] = Δι234 , (14)

where e.g. 612 Stands for δαβδ(ε — ε'). Equation (14) shows that there are
cross correlations between different scattering states. Although this bears
no effect on the time-averaged current, it is essential for the current fluctu-
ations. For the noise power one finds

„ oo oo oo oo oo

PH = 2?2 Σ ί dt [de i de' i de" Γ
Π 0 ς J J J J J

a,/3,7,o - o o 0 0 0 0

' " '"
χ Ιαβ(ε, ε')ΙΊδ(ε", ε/")Δα/37(5(ε, ε', ε", ε'")

9 00

e f
= 2 — ]Γ / άε!αβ(ε,ε + Ηω)Ιβα(ε + Ηω,ε)/α(ε)[1 - /6(ε + ^ω)] .

(15)

The low-frequency limit is found by Substitution of Eq. (8),

„2 ~

P = 2

o

(16)
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where we have again used the unitarity of S.
Equation (16) allows us to evaluate the noise for various cases. Below

we will assume that eV and feg T are small enough to neglect the energy
dependence of the transmission matrix, so that we can take t at ε = Ep.
Let us first determine the noise in equilibrium, i.e. for V — 0. Using the
relation /(l - /) = -kBTdf/de we find

n , (17)
n=l

which is indeed the Johnson- Nyquist formula (2). For the shot-noise power
at zero temperature we obtain

(1-Τη). (18)
n=l

Equation (18), due to Büttiker [26], is the multi-channel generalization
of the single-channel formulas of Khlus [22], Lesovik [24], and Yurke and
Kochanski [25]. One notes, that P is again only a function of the transmis-
sion eigenvalues.

It is clear from Eq. (18) that a transmission eigenstate for which Tn = l
does not contribute to the shot noise. This is easily understood: At zero
temperature there is a non-fhictuating incoming electron stream. If there is
complete transmission, the transmitted electron stream will be noise free,
too. If Tn decreases, the transmitted electron stream deviates in time from
the average current. The resulting shot noise P is still smaller than Pp0isson,
because the transmitted electrons are correlated due to the Pauli princi-
ple. Only if Tn <C l, the transmitted electrons are uncorrelated, yielding
füll Poisson noise (see See. 1.3.1). Essentially, the non-fluctuating occupa-
tion number of the incoming states is a consequence of the electrons being
fermions. In this sense, the suppression below the Poisson noise is due to
the Pauli principle. On the other hand, one must realize that the noise
suppression is not an exclusive property of fermions. It occurs for any in-
coming beam with a non-fluctuating occupation number, for example a
photon number state [29].

The generalization of Eq. (18) to the non-zero voltage, non-zero tem-
perature case is [28, 30]

2 N

P = 2-Y^[2kBTT^ + Tn(l-Tn)eVCoth(eV/2kBT)] . (19)
n=l

The crossover from the thermal noise (17) to the shot noise (18) depends
on the transmission eigenvalues.
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As a final remark, we mention that in the above derivations the absence
of spin and valley degeneracy has been assumed for notational convenience.
It can be easily included. For a two-fold spin degeneracy this results in the
replacement of the e2//i prefactors [such äs in Eqs. (13) and (18)] by 2e2//i.
^Frorn now on, we siniply use GQ = degeneracy factor χ e2/h äs the unit of
conductance and PO Ξ leVGo äs the unit of shot-noise power.

1.3. T WO SIMPLE APPLICATIONS

The above results are valid for conductors with arbitrary (elastic) scatter-
ing. If the transmission eigenvalues are known, the conduction and noise
properties can be readily calculated. Below, this is illustrated for two simple
Systems. More complicated conductors are discussed in Sees. 2-4.

1.3.1. Tunnel barrier
In a tunnel barrier, electrons have a very small probability of being trans-
mitted. We model this by taking Tn <C l, for all n. Substitution into the for-
mula for the shot noise (18) and the Landauer formula for the conductance
(13) yields P = Pp0isson at zero temperature. For arbitrary temperature we
obtain from Eq. (19),

P = coth(eV/2kBT) PPoisson . (20)

This equation, due to Pucel [31], describes the crossover from thermal noise
to füll Poisson noise. For tunnel barriers this crossover is governed entirely
by the ratio eV/keT and not by details of the conductor. This behavior has
been observed in various Systems, see e.g. Refs. [32, 33]. Electron-electron
interactions can lead to modification of Eq. (20), see Ref. [34, 35, 36].

1.3.2. Quantum Point Contact
A point contact is a narrow constriction between two pieces of conductor.
If the width W of the constriction is much smaller than the mean free
path of the bulk material, but much greater than the Fermi wave length
XF, the conductance is given by the Sharvin formula [37], which in two
dimensions reads G = Go2W/Xp· In such a classical point contact the shot
noise is absent, äs found by Kulik and Omel'yanchuk [38]. In a quantum
point contact W is comparable to Xp- Experimentally, a quantum point
contact can be formed in a two-dimensional electron gas in an (Al,Ga)As
heterostructure [8]. The constriction is defined by depletion of the electron
gas underneath nietal gates on top of the structure. Upon changing the gate
voltage Vg, the width W is varied. The conductance displays a stepwise
increase in units of GQ äs a function of Vg [39, 40]. This is caused by the
discrete number NO = Int[2W/Xp] of modes at the Fermi energy which fit
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Figure 2 (a) Conductance G (dashed line) and shot-noise power P (füll Ime) versus
Fermi energy of a two-dimensional quantum point contact, accordmg to the saddle-point
model, with ων = Ζωχ (b) Expenmentally observed G and P versus gate voltage Vg

(unpublished data from Reznikov et al similar to the expenment of Ref [49], but at a
lower temperature T = 0 4 K)

into the constriction width. As a result, NQ transmission eigenvalues equal
l, the others 0, yielding a quantized conductance according to Eq. (13).

Lesovik has predicted that the shot noise in a quantum point contact
is distinct from a classical point contact [24]. At the conductance plateaus
the shot noise is absent, äs follows from Eq. (18). However, in between the
plateaus, where the conductance increases by GQ, there is a transmission
eigenvalue which is between 0 and 1. As a consequence, the shot noise
has a peak. We illustrate this behavior with a model by Büttiker [41] of a
two-dimensional saddle-point potential,

V(x,y) = V0 - Ι 1 9 9
^mUyV (21)

where Vb is the potential at the saddle point, and ωτ and ων determine the
curvatures. The transmission eigenvalues at the Fermi energy are [41]

Tn = [l + = EF - V0 - (n - \} (22)

Results for the conductance and the shot-noise power are displayed in Fig.
2a. The shot noise peaks in between the conductance plateaus and is absent
on the plateaus. For large JV, the peaks in the shot noise become negligible
with respect to the Poisson noise, in agreement with the classical result
[38]. More theoretical work on noise in quantum point contacts is given in
Refs. [42, 43, 44, 45].

The prediction by Lesovik of this quantum size-effect in the shot noise
formed a challenge for experimentalists. An early experiment was done
by Li et al. [46]. However, a difficulty in the Interpretation was that the
frequency was not high enough to distinguish between shot noise and resis-
tance fluctuations, which are also quite sensitive to changes in the width of
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the point contact [47, 48]. Recent experiments at much higher frequencies
by Reznikov et al. [49] (see also Ref. [50]) and with very elaborate shielding
by Kumar et al. [51] have unambiguously demonstrated the occurrence of
suppressed shot noise on the conductance plateaus. Experimental data of
Reznikov et al. are shown in Fig. 2b.

1.4. KINETIC THEORY

The scattering theory of See. 1.2 fully takes into account the phase co-
herence of the electron wave function. If phase coherence is not essential,
one can use instead a semiclassical kinetic theory. The word "semiclassical"
means that classical mechanics is combined with the quantum-mechanical
Pauli principle. A semiclassical kinetic theory for shot noise has been de-
veloped by Kulik and OmePyanchuk for a point contacts[38], by Nagaev for
a diffusive conductor [52], and by the authors for an arbitrary conductor
[53, 54]. (Refs. [53, 54] correct Ref. [55].)

The theory is based on an extension of the Boltzmann equation to in-
clude fluctuations of the distribution function [56, 57, 58]. By analogy with
the Langevin equation in the theory of stochastic processes, this fluctuating
Boltzmann equation is called the Boltzmann- Langevin equation. We give a
brief summary of the method.

The fluctuating distribution function /(r, k, i) in the conductor equals
(2π)^ times the density of electrons with position r, and wave vector k, at
time t. The average over time-dependent fluctuations (/} Ξ / obeys the
Boltzmann equation,

( r , k , i ) = 0 , (23a)

dt dt dr

The derivative (23b) (with v = ftk/m) describes the classical motion in the
force field ^-"(r) = — eö0(r)/<9r + ev x B (r), with electrostatic potential φ(τ)
and magnetic field B (r). The term Sf accounts for the stochastic effects of
scattering. In the case of impurity scattering, the scattering term equals

,k,i) = /dk'W k k/(r)[/(r,k,t)-/(r,k',i)]. (24)

The kernel VFkk' (r) is the transition rate for scattering from k to k' , which
may in principle also depend on r.

We consider the stationary Situation, where / is independent of t. The
time-dependent fluctuations öf = f — f satisfy the Boltzmann-Langevin
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equation [56, 57],

(25)

where j is a fluctuating source term representing the fluctuations induced
by the stochastic nature of the scattering. The flux j has zero average,
(j) = 0, and covariance

(j(r, k, i) j(r', k', t')} = (27r)d 6(r - r') δ (t - t') J(r, k, k') · (26)

The delta functions ensure that fluxes are only correlated if they are in-
duced by the same scattering process. The flux correlator J depends on
the type of scattering and on /, but not on öf. Due to the Pauli principle
the scattering possibilities of an incoming state depend on the occupation
of possible outgoing states. As a consequence, J is roughly proportional to
/(! — /'). The precise correlator J for the impurity-scattering term (24) has
been derived by Kogan and Shul'man [57]. Scattering by a tunnel barrier
corresponds to another correlator [53, 54].

The kinetic theory can be applied to calculate various noise properties,
including the effects of electron-electron and electron-phonon scattering
[59, 60, 61]. In Refs. [53, 54] a general formula for the shot-noise power
has been derived from Eqs. (25) and (26). Further discussion of the kinetic
theory is outside the scope of this review. In the following Section, we
discuss an alternative method to calculate the effects of phase breaking
and other scattering processes.

1.5. PHASE BREAKING, THERMALIZATION,
AND INELASTIC SCATTERING

Noise measurements require rather high currents, which enhance the rate
of scattering processes other than purely elastic scattering. The phase-
coherent transmission approach of See. 1.2 is then no longer valid. The
effects of dephasing and inelastic scattering on the shot noise have been
studied in Refs. [52, 54, 59, 60, 61, 62, 63, 64, 65, 66, 67]. Below, we discuss a
model [54, 64] in which the conductor is divided in separate, phase-coherent
parts connected by Charge-conserving reservoirs. This model includes the
following types of scattering:

— Quasi-elastic scattering. Due to weak coupling with external degrees
of freedom the electron-wave function gets dephased, but its energy is
conserved. In metals, this scattering is caused by fluctuations in the
electromagnetic field [68].

— Electron heating. Electron-electron scattering exchanges energy be-
tween the electrons, but the total energy of the electron gas is con-
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equation [56, 57],

(25)
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Figure 3. Additional scattering inside the conductor is modeled by dividing it in two
parts and connecting theni through another reservoir. The electron distributions in the
left and the right reservoir, /ι(ε) and /2(e), are Fermi-Dirac distributions. The distribu-
tion / ΐ2(ε) in the intermediate reservoir depends on the type of scattering.

served. The distribution function is therefore assumed to be a Fermi-
Dirac distribution at a temperature above the lattice temperature.

— Inelastic scattering. Due to electron-phonon interactions the electrons
exchange energy with the lattice. The electrons emerging from the
reservoir are distributed according to the Fermi-Dirac distribution, at
the lattice temperature T.

The model is depicted in Fig. 3. The conductors l and 2 are connected
via a reservoir with distribution function f i i ( e } . The time-averaged current
Im through conductor 777, = 1,2 is given by

h = (Gi/e)/<fe[/i(e)-/i2(e)], (27a)

h = (G2/e)/cfe[/1 2(e)-/2(£)]. (27b)

The conductance Gw = l /Am = G0 En=iTnm with Tm the n-th trans-
mission eigenvalue of conductor m. We assume small eV and fcßT, so that
the energy dependence of the transmission eigenvalues can be neglected.

Current conservation requires that I\ = 1% = I. The total resistance of
the conductor is given by Ohm's law,

R = Rl + R2, (28)

for all three types of scattering that we consider. Our model is not suitable
for transport in the ballistic regime or in the quantum Hall effect regime,
where a different type of "one-way" reservoirs is required [69, 70].

The time-averaged current (27) depends on the average distribution
/i2(e) in the reservoir between conductors l and 2. In order to calculate
the current fluctuations, we need to take into account that this distribution
varies in time. We denote the time-dependent distribution by /ι2(ε, t). The
fluctuating current through conductor l or 2 causes electrostatic potential
fluctuations δφιι(ϊ) in the reservoir, which enforce Charge neutrality. In
Ref. [64], the reservoir has a Fermi-Dirac distribution /ι2(ε, t) = /[ε —
Ep — eV^ — βδφιζ(ί)], with Ep + eV\2 the average electrochemical potential
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Figure 3. Additional scattering inside the conductor is modeled by dividing it in two
parts and connecting them through another reservoir. The electron distributions in the
left and the right reservoir, /i(e) and /2(ε), are Fermi-Dirac distributions. The distribu-
tion /ΐ2(ε) in the intermediate reservoir depends on the type of scattering.

served. The distribution function is therefore assumed to be a Fermi-
Dirac distribution at a temperature above the lattice temperature.

— Inelastic scattering. Due to electron-phonon interactions the electrons
exchange energy with the lattice. The electrons emerging from the
reservoir are distributed according to the Fermi-Dirac distribution, at
the lattice temperature T.

The model is depicted in Fig. 3. The conductors l and 2 are connected
via a reservoir with distribution function /ΐ2(ε). The time-averaged current
Im through conductor m = l, 2 is given by

/ι = (Οι/β)ώ[/ι(ε)-/ι 2 (ε)], (27a)

h = (G2/e)/<fe[/i 2(e)-/2(e)]. (27b)

The conductance Gm = l/Rm = G0 E^Li T^m\ with T^m) the n-th trans-
mission eigenvalue of conductor m. We assume small eV and /c#T, so that
the energy dependence of the transmission eigenvalues can be neglected.

Current conservation requires that I\ = /2 = Ι· The total resistance of
the conductor is given by Ohm's law,

R = Rl+R2, (28)

for all three types of scattering that we consider. Our model is not suitable
for transport in the ballistic regime or in the quantum Hall effect regime,
where a different type of "one-way" reservoir s is required [69, 70].

The time-averaged current (27) depends on the average distribution
/Ι2(ε) in the reservoir between conductors l and 2. In order to calculate
the current fluctuations, we need to take into account that this distribution
varies in time. We denote the time-dependent distribution by /ΐ2(ε, i). The
fluctuating current through conductor l or 2 causes electrostatic potential
fluctuations δφΐ2(ί) in the reservoir, which enforce Charge neutrality. In
Ref. [64], the reservoir has a Fermi-Dirac distribution /ΐ2(ε,ί) = /[ε —
Ep — eVi2 — βδφΐ2 (t)], with Ep + eVi? the average electrochemical potential
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in the reservoir. As a result, it is found that the shot-noise power P of the
entire conductor is given by [64]

R2P = Ä?P! + ΚΐΡ·2 . (29)

In other words, the voltage fluctuations add. The noise powers of the two
Segments depend solely on the time-averaged distributions [26, 28],

Pm = 2Gm/de [ f m ( l - fm) + /12(1 - /i2)] + 2Sm fde (fm - /12)
2 , (30)

J J

where Sm = Ο^Σ^Τ^^ - T^m)). The analysis of Ref. [64] is easily
generalized to arbitrary distribution /i2. Then, we have ,/ι2(ε,ί) = /ι2[ε —
ei0i2 (*)]· It follows that Eqs. (29) and (30) remain valid, but /ι2(ε) may be
different. Let us determine the shot noise for the three types of scattering.

Quasi-elastic scattering. Here, it is not just the total current which must
be conserved, but the current in each energy ränge. This requires

, .
(31)

We note that Eq. (31) implies the validity of Eq. (28). Substitution of Eq.
(31) into Eqs. (29) and (30) yields at zero temperature the result [54]:

P =

Electron heating. We model electron-electron scattering, where energy
can be exchanged between the electrons at constant total energy. We assume
that the exchange of energies establishes a Fermi-Dirac distribution /ΐ2(ε)
at an electrochemical potential Ep + eVi? and an elevated temperature Ti2.
From current conservation it follows that

Vi2 = (Ä2/Ä) V . (33)

Conservation of the energy of the electron gas requires that Τχ2 is such that
no energy is absorbed or emitted by the reservoir. This implies

(34)-l/ ' r r>2 ' \"^7Lo K*

with the Lorentz number £Q = ^i^fes/e)2. At zero temperature in the

left and right reservoir and for R\ = Ä2 we have feßTi2 = (\/3/27r)e1[^ ~
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0.28eV. For the shot noise at T = 0, we thus obtain using Eqs. (29) and
(30) theresult [54]:

P =

(35)

Inelastic scattering. The distribution function of the intermediate reser-
voir is the Fermi-Dirac distribution at the lattice temperature T, with an
electrochemical potential μ\2 Ξ Ερ + eVi2, where Via is given by Eq. (33).
This reservoir absorbs energy, in contrast to the previous two cases. The
zero-temperature shot-noise power is given by [64]:

/ r>3 ο ι öS c \ τ}—1 r> ί'ίκλ
— l-Ki<->l + Λ2θ2 Ι Λ -rpoisson · (oO)

This model will be applied to double-barrier junctions, chaotic cavi-
ties, and disordered conductors in Sees. 2-4. Quite generally, we will find
that quasi-elastic scattering has no effect on the shot noise, while electron
heating leads to a small enhancement of the shot noise. Inelastic scatter-
ing suppresses the shot noise in most cases, but not in the double-barrier
junction.

1.6. STATISTICS OF TRANSMITTED CHARGE

The conductance is a measure for the average number of electrons transmit-
ted per unit time. The shot noise quantifies the variance of the transmitted
charge. Levitov and Lesovik have studied the füll distribution function of
charge transmitted through a mesoscopic conductor [71, 72]. This function
Pq(t) gives the probability that exactly q electrons have been transmitted
during a given time interval i. An alternative way to describe this distribu-
tion is through its characteristic function χ(λ, t). They are mutually related
according to [73]

(/(ί)^λ, Pq(t] = ~ dXe-^X(X,t) . (37)
q= ^-π

The average number of electrons transmitted during a time t is given by

_
q(t) = Y,qPq(t) = lim— χ(λ,ί) . (38)

q=0 ~*
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More generally, one can express the k-th moment μ^ (t) of the distribution
by

χ(λ;ί). (39)

The average current is simply I — βμι(ί)/ί and the noise power equals
P = 2e2 limt^oo var ςτ(ί)/ί = 2e2 \imt^&2(t) - μ?(ί)]/ί.

Levitov and Lesovik [71] have computed the characteristic function at
zero temperature and at small voltage V. The result

ί) = Π Κ6 ΐ λ - !)τη + l]G°Vt/e (40)
n=l

is the characteristic function of the binomial or Bernoulli distribution: In
scattering channel n, the Charge transmitted in a time interval t is due to
G^Vt/e independent attempts to transmit an electron, each time with a
probability Tn. The fact that only one electron (within a single channel)
can be transmitted during a time e/G^V is due to the Pauli principle.
Only if Tn <^ l for all n, Eq. (40) reduces to the characteristic function
of a Poisson process. Otherwise, the electrons are transmitted according to
sub-Poissonian statistics.

The distribution function of transmitted charge has been determined for
a normal-metal-superconductor point contact by Muzykantskii and Khmel-
nitskii [74], for a disordered conductor by Lee, Levitov, and Yakovets [75],
and for a double-barrier junction by one of the authors [76].

2. Double-Barrier Junction

2.1. RESONANT TUNNELING

In 1973 Tsu and Esaki predicted the occurrence of a negative differential
resistance due to resonant tunneling through two tunnel barriers in series
inside a semiconductor heterostructure [77]. The experimental observation
[78] opened a large field of research. The study of noise in resonant tunnel-
ing is a recent development, sparked by the demonstration by Li et al. [79]
that the shot noise in an (Al,Ga)As double-barrier junction may vary be-
tween one-half (for equal barrier heights) and the füll Poisson noise (for very
unequal barrier heights). This observation, confirmed by other experiments
[80, 81, 82], has inspired many theoreticians [83, 84, 85, 86, 87, 88, 89].
Below we will only consider the zero-frequency, low-voltage limit, in order
to treat the double-barrier junction on the same footing äs the other Sys-
tems described in this review. We assume high tunnel barriers with mode-
independent transmission probabilities Γι,Γί <C 1.
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The transmission eigenvalues through the two barriers in series are given
by a Fabry-Perot type of formula,

T =n

where φη is the phase accumulated in one round trip between the barriers.
The density p(T) = (J^n δ (T — Tn}} of the transmission eigenvalues follows
from the uniform distribution of φη between 0 and 2π [90] ,

τ)' Te[T-'T+1' (42)

p(T) = 0 otherwise, with T_ = ΓχΓ2/π2 and T+ = 4Γ!Γ2/(Γι + Γ2)
2. The

density (42) is plotted in Fig. 4a.
The average conductance,

(G) = Go dT p(T] T = GoN-^^- , (43)
J J- l + J-2
0

is just the series conductance of the two tunnel conductances. The res-
onances are averaged out by taking a uniform distribution of the phase
shifts φη. Physically, this averaging corresponds either to an average over
weak disorder in the region between the barriers, or to a summation over
a large number of modes if the Separation between the barriers is large
compared to the Fermi wave length, or to an applied voltage larger than
the width of the resonance.

For the shot-noise power one obtains

(P) = Po dTp(T] T(l - T) = 1 2 Jfroisson , (44)

using Eqs. (42) and (43). This result was first derived by Chen and Ting
[83]. For asymmetric junctions, one barrier dominates the transport and the
shot noise equals the Poisson noise. For Symmetrie junctions, the shot noise
gets suppressed down to (P) = ^Ppoisson for ΓΙ = Γ2. The theoretical result
(44) is in agreement with the experimental observations [79, 80, 81, 82].

The suppression of the shot noise below Pp0isson in Symmetrie junctions
is a consequence of the bimodal distribution of transmission eigenvalues, äs
plotted in Fig. 4a. Instead of all Tn's being close to the average transmission
probability, the Tn's are either close to 0 or to 1. This reduces the sum
Tn(l — Tn}. A similar suppression mechanism exists for shot noise in chaotic
cavities and in disordered conductors, see Sees. 3 and 4.
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Figure 4· The distribution ρ(Τ) of transmission eigenvalues T for (a) a double-barrier
junction, according to Eq. (41) with Γι = Γ2 = 0.01; (b) a chaotic cavity, according
to Eq. (46) with Ni = Nz = N; and (c) a disordered wire, according to Eq. (51) with
L = 201. Each structure has a bimodal distribution.

Phase coherence is not essential for the occurrence of suppressed shot
noise. Davies et al. obtained the result (44) from a model of incoherent
sequential tunneling [84]. The method of See. 1.5 (with Gm = Sm = GoNrm

for m = 1,2) shows that both quasi-elastic scattering [see Eq. (32)] and
inelastic scattering [see Eq. (36)] do not modify Eq. (44). Thermalization
of the electrons in the region between the barriers enhances the shot noise,
äs follows from Eq. (35). For ΓΙ = Γ2 we find

= + ln ^ 0.58PPo
(45)

which is slightly above the one-half suppression in the absence of thermal-
ization. More theoretical work on the influence of internal scattering and
of dephasing on the shot noise in double-barrier junctions is contained in
Refs. [91, 92, 93, 94, 95].

2.2. COULOMB BLOCKADE

The suppression of the shot noise described in the previous Section is due
to correlations induced by the Pauli principle. Coulomb interactions are
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another source of correlations among the electrons. A measure of the im-
portance of Coulomb repulsion is the charging energy EC = e2/2C of a
single electron inside the conductor with a capacitance C. In open con-
ductors, where C is large, charging effects are expected to be negligible
[96]. For closed conductors, such äs a double-barrier junction, EC can be
larger than Ä^T, in which case charging effects have a pronounced influ-
ence on the conduction [97]. If eV < EC, conduction through the junction
is suppressed. This is known äs the Coulomb blockade. At eV > EC, one
electron at a time can tunnel into the junction. The next electron can fol-
low, only after the first electron has tunneled out of the junction. This is the
single-electron tunneling regime. The theory of shot noise in single-electron
tunneling devices has been developed by Korotkov et al. [98], Hershfield et
al. [99], and others [100, 101, 102, 103, 104, 105, 106].

Experiments have been reported by Birk, de Jong, and Schönenberger
[107]. Here, the double-barrier junction was formed by a scanning-tunneling
microscope positioned above a metal nanoparticle on an oxidized Substrate.
Due to the small size of the particle, Ec > WOOkBT, at T = 4 K. The
relative heights of the two tunnel barriers can be modified by changing
the tip-particle distance. Experimental results for an asymmetric junction
are plotted in Fig. 5. The I-V characteristics display a stepwise increase
of the current with the voltage. (Rotating the plot 90° yields the usual
presentation of the 'Coulomb staircase.') At small voltage, I ~ 0 due to
to the Coulomb blockade. At each subsequent step in I, the number of
excess electrons in the junction increases by one. The measured shot noise
oscillates along with the step structure in the I-V curve. The füll shot-noise
level P — Pp0isson is reached at each plateau of constant I. In between, P
is suppressed down to ^Ppoisson- The experimental data are in excellent
agreement with the theory of Ref. [99].

A qualitative understanding of the periodic shot-noise suppression caused
by the Coulomb blockade goes äs follows: On a current plateau in the I-V
curve, the number of electrons in the junction is constant for most of the
time. Only during a very short instance an excess electron occupies the
junction, leading to the transfer of one electron. This fast transfer process
is dominated by the highest tunnel barrier. Since the junction is asymmet-
ric, Poisson noise is expected. The Situation is different for voltages where
there is a step in the I-V curve. Here, two charge states are degenerate
in total energy. If an electron tunnels into the junction, it may stay for a
longer time, during which tunneling of the next electron is forbidden. Both
barriers are thus alternately blocked. This leads to a correlated current,
yielding a suppression of the shot noise.

An essential requirement for the Coulomb blockade is t hat G < e2 /h.
For larger G the quantum-mechanical charge fluctuations in the junction



242

0 4 -

0 0

100

075-

050-
000

(a) _

025
I (nA)

050

Figure 5 Experimental results by Birk et al [107] in the smgle-electron tunnehng
regime The double-barner junction consists of a tip positioned above a nanoparticle on
a Substrate (a) Experimental voltage V versus current / (b) Shot-noise power P versus
I Squares expenment, solid hne theory of Hershfield et al [99]

become big enough to overcome the Coulomb blockade. The next Section
will discuss shot noise in a quantum dot, without including Coulomb inter-
actions. This is justified äs long äs G > e2 /h . For smaller G, the quantum
dot behaves essentially äs the double-barrier junction considered above.

3. Chaotic Cavity

A cavity of sub-micron dimensions, etched in a semiconductor is called a
quantum dot. The transport properties of the quantum dot can be measured
by coupling it to two electron reservoirs, and bringing them out of equilib-
riuni. We consider the generic case that the classical motion in the cavity
can be regarded äs chaotic, äs a result of scattering by randomly placed
impurities or by irregularly shaped boundarics. Then transport quantities
are insensitive to microscopic properties of the quantum dot, such äs the
shape of the cavity and the degree of disordcr.

A theory of transport through a chaotic cavity can be based on the single
assumption that the scattering matrix of the System is uniformly distributed
in the unitary group [108, 109]. This is the "circular ensemble" of random-
matrix theory [110, 111]. The assumption of a uniform distribution of the
scattering matrix is valid if the coupling to the electron reservoirs occurs
via two balhstic point contacts, with a conductance Gm = GoNm, m =
1,2. (Otherwise a more general distribution, known äs the "Poisson kerncl"
applies [112].) The presence of time-reversal symmetry is accounted for



243

by restricting the scattering matrix to the subset of Symmetrie unitary
matrices. This is known äs the circular orthogonal ensemble (labeled by
the index β = 1). If any unitary matrix is equally probable, the ensemble
is called circular unitary (ß = 2).

To compute the statistics of transport properties in a quantum dot one
needs to know the distribution of the transmission eigenvalues in the circu-
lar ensemble. In the most general case JVi ^ N%, the transmission matrices
ii2 and t-21 are rectangular. The two matrix products tl2tl2 and ί21ί2ι

 con"
tain a common set of mm(Ni,N2) non-zero transmission eigenvalues. Only
these contribute to the transport properties. For Nt 3> l the distribution
p(T) of the transmission eigenvalues is [113]

_ i 1/2

'̂'
p(T) = 0 otherwise, with T_ = (Ni - N2)

2/(N? + Nj). This density is
plotted in Fig. 4b.

The average conductance,

Γ1 NiN?
(G) = Go / dTp(T}T = Go — 1-1- , (47)

./ο -ΑΊ + 7V2

is the series conductance of the two point contacts. The average shot-noise
power,

Γ1 TViTVo
(P) - Po dT p(T) T(1-T)= 2

 PPo1Sson , (48)

is smaller than the Poisson noise. For two identical point contacts the sup-
pression factor is one quarter [109], to be compared with the one-half sup-
pression in a double-barrier junction (see See. 2.1) and the one-third sup-
pression in a disordered wire (see See. 4.1).

The result (48) does not require phase coherence, äs follows frorn Eq.
(32) using S m — 0 for m = 1,2. However, it is affected by thermalization
of the electrons and also by inelastic scattering. ,/,From Eq. (35) we find in
the case of complete thermalization,

P =

For NI = 7V2, this yields P = (\X3/27r)Pp0isson — 0.28Pp0iSSon· As follows
from Eq. (36), inelastic scattering suppresses the shot noise completely.
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4. Disordered Metal

4.1. ONE-THIRD SUPPRESSION

We now turn to transport through a diffusive conductor of length L much
greater than the mean free path l, in the metallic regime (L <C localization
length). The average conductance is given by the Drude formula,

Nl
(G) = Go — , (50)

up to small corrections of order GQ (due to weak localization). The mean
free path l = a^ Itr equals the transport mean free path ltT times a numerical
coefficient, which depends on the dimensionality d of the Fermi surface
(α2 = π/2, «s = 4/3).

Prom Eq. (50) one might surmise that for a diffusive conductor all the
transmission eigenvalues are of order £/L, and hence <C 1. This would imply
the shot-noise power P = Pp0isson of a Poisson process. This surmise is
completely incorrect, äs was first pointed out by Dorokhov [114], and later
by Imry [115] and by Pendry, MacKinnon, and Roberts [116]. A fraction
i l L of the transmission eigenvalues is of order unity (open channels), the
others being exponentially small (closed channels). For l >C L <^ N l, the
density of the Tn's is given by [114]

p(T) = 0 otherwise, with T_ = 4e~2L/^. The density p(T), plotted in Fig.
4c, is again bimodal with peaks near unit and zero transmission. Dorokhov
[114] obtained Eq. (51) from a scaling equation, which describes the evolu-
tion of p(T] on increasing L in a wire geometry [117, 118]. A derivation for
other geometries has been given by Nazarov [119].

One easily checks that the bimodal distribution (51) leads to the Drude
conductance (50). For the average shot-noise power it implies

Nl l
(P) =POTF = TrPpoisson - (52)

oL· o

This suppression of the shot noise by a factor one-third is universal, in the
sense that it does not depend on the specific geometry nor on any intrinsic
material parameter (such äs i). The one-third suppression was discovered
by Beenakker and Büttiker [64] in the way described above, and by others
using different methods [52, 119, 120, 121]. Nagaev's theory [52] is based
on the semiclassical Boltzmann-Langevin equation, see See. 1.4. One might
therefore infer that there is also a semiclassical derivation of the bimodal
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Figure 6. The shot-noise power P of a disordered metallic wire äs a function of its
length L, äs predicted by theory. Indicated are the elastic mean free path (., the elec-
tron-electron scattering length lee and the electron-phonon scattering length lep. Dotted
lines are interpolations (after Ref. [127]).

distribution of transmission eigenvalues, which is the key ingredient of the
quantum-mechanical theory. Such a derivation is given in Ref. [122].

4.2. DEPENDENCE ON WIRE LENGTH

The one-third suppression of the shot noise breaks down if the conductor
becomes too short or too long. Upon decreasing the length of the conduc-
tor, when L becomes comparable to l, the electron transport is no longer
diffusive, but enters the ballistic regime. Then the shot noise is suppressed
more strongly, according to [120]

(53)

For L <ξ^ l there is no shot noise, äs in a ballistic point contact [38]. Equa-
tion (53) is exact for a special model of one-dimensional scattering, but
holds more generally within a few percent [54]. A Monte-Carlo Simulation
in a wire geometry [123] is in good agreement with Eq. (53). The crossover
of the shot noise from the ballistic to the diffusive regime is plotted in Fig.
6. Upon increasing L at constant cross section of the conductor, one enters
the localized regime. Here, even the largest transmission eigenvalue is ex-
ponentially small [114], so that P = -Ppoisson· Shot noise in one-dimensional
chains for various models of disorder has been studied in Ref. [124].

Experimentally, the crossover from the metallic to the localized regime is
usually not reached, because phase coherence is broken when L is still much
smaller than the localization length N1. In the remainder of this Section, we
apply the method of See. 1.5 to determine the effect of phase breaking and
other inelastic scattering events on the shot noise in a disordered metal
[54]. We divide the conductor into M Segments connected by reservoirs,
taking the continuum limit M —> oo. The electron distribution at position
χ is denoted by /(ε, χ). At the ends of the conductor /(ε,Ο) = /ι(ε) and
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/(ε, .L) — /2(ε), z'-e. the electrons are Fermi-Dirac distributed at tempera-
ture T and with electrochemical potential μ(0) = E ?̂ + eF and μ (L) = Ep,
respectively. It follows from Eqs. (29) and (30) that the noise power is given

by
L oo

P ^~fdxfdef(£,x)(l - f ( e , x ) ] , (54)

o o

a formula first obtained by Nagaev [52]. We evaluate Eq. (54) for the three
types of scattering discussed in See. 1.5.

Quasi-elastic scattering. Current conservation and the absence of inelas-
tic scattering requires

/(ε,ζ) = /(ε,0) + /(ε,£). (55)

The electron distribution at χ = L/2 is plotted in the inset of Fig. 7.
Substitution of Eq. (55) into Eq. (54) yields [52]

P = l [4kBTG + ei cotli(eV/2kBT)] . (56)

At zero temperature the shot noise is one-third of the Poisson noise. The
same result follows from the phase-coherent theory [Eqs. (19) and (51)],
demonstrating that quasi-elastic scattering has no effect on the shot noise.
The temperature dependence of P is plotted in Fig. 7.

Electron heating. The electron-distribution function is a Fermi-Dirac
distribution with a spatially dependent electrochemical potential μ (χ) and
temperature Te(x),

μ(χ) = EF + eV, (57b)

rp ίπ·\ 4 /Τ2 4_ (r,, l 7"\Γΐ /V / M l T/2 //'„ /^7(-Λ.Lg^X^ — Λ / J. ~t~ ^Χ/-Δν^[1 — ^ X / _ f - / y J V l JL,Q , ^ O / C j

cf. Eqs. (33) and (34). Equations (54) and (57) yield for the noise power
the result [59, 60, 125]

( /o y \

-^ττ^ l ' (58)^\eV ) 2π

plotted in Fig. 7. In the limit eV 3> kBT one finds

P = ±Λ/3 Ppoisson - 0.43 Ppoisson - (59)
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Figure 7. The noise power P versus voltage V for a disordered wire in the presence
of quasi-elastic scattering [solid curve, from Eq. (56)] and of electron heating [dashed
curve, from Eq. (58)]. The inset gives the electron distribution in the middle of the wire
at fcßT = ^eV. The distribution for inelastic scattering is included for comparison
(dash-dotted). Experimental data of Steinbach, Martinis, and Devoret [127] on silver
wires at T = 50 mK are indicated for length L = Ιμιη (circles) and L = 30/um (dots).

Electron-electron scattering increases the shot noise above |Pp0isson because
the exchange of energies makes the current less correlated.

Inelastic scattering. The electron-distribution function is given by

-l

(60)

with μ(χ) according to Eq. (57b). We obtain from Eqs. (54) and (60) that
the noise power is equal to the Johnson-Nyquist noise (2) for arbitrary
V. The shot noise is thus completely suppressed by inelastic scattering
[59, 60, 62, 64, 65, 66].

The dependence of the shot-noise power on the length of a disordered
conductor is plotted in Fig. 6. The phase coherence length (between l and
lee) does not play a role. An early experimental demonstration of sub-
Poissonian shot noise in a wire defined in an (Al,Ga)As heterostructure
was reported by Liefrink et al. [126]. The measurements were in agreement
with theory, but lacked the precision needed to discriminate between the
elastic and the hot-electron value. More accurate experiments by Steinbach,
Martinis, and Devoret [127] on silver wires are shown in Fig. 7. The noise in
a wire of L = 30 μηι is in excellent agreement with the hot-electron result
(58). For the L = l /um wire the noise crosses over to the elastic result (56),
without quite reaching it.
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(b)

Figure 8. Feynman paths enclosing a magnetic flux Φ. The paths in (a) correspond to
the same electron, the paths in (b) to two different electrons.

5. Aharonov-Bohm Effect

Since the current operator is a one-particle observable, the shot-noise power
(given by the current-current correlator) is a two-particle transport prop-
erty. This is an essential difFerence with the conductance, which is a one-
particle property. The distinction between one-particle and two-particle
properties is relevant even without Coulomb interactions between the elec-
trons, because of the quantum-mechanical exchange interaction. A strik-
ing demonstration of the two-particle nature of shot noise, discovered by
Büttiker [128, 129], occurs in the Aharonov-Bohm effect.

The Aharonov-Bohm effect in electrical conduction is a periodic oscilla-
tion of the conductance of a ring (or cylinder) äs a function of the enclosed
magnetic flux Φ. (For reviews, see Refs. [130, 131].) The fundamental pe-
riodicity of the oscillation is h/e, because a flux increment of an integer
number of flux quanta changes by an integer multiple of 2π the phase dif-
ference between Feynman paths along the two arms of the ring (see Fig.
8a). Since the conductance is a one-particle property, the two interfering
Feynman paths must belong to the same electron, which on entering the
ring has a probability to traverse the ring either clock-wise or counter-
clock-wise. For a maximal amplitude of the conductance oscillations the
two probabilities should be approximately equal. The Lorentz force causes
an electron to traverse the ring preferentially in one of the two directions.
This is why the Aharonov-Bohm effect is suppressed by a strong magnetic
field [8].

Shot noise can exhibit Aharonov-Bohm oscillations which persist in a
strong magnetic field. The Lorentz force guides the right-moving electron
along the upper arc of the ring, and the left-moving electron along the
lower arc (see Fig. 8b). The absolute value squared | ΐ/Ί | 2 , |V)2 2 of each of
the two single-particle wave functions ψι,ψ2 does not depend on Φ, hence
the conductance is Φ-independent. However, the absolute value squared of
the two-particle wave function |Φ(ΐΊ,Γ2) | 2 = \'Φι(χι)'φ2(ΐ2) — ψι(τ2)ψ2('Τι)\'2

does depend on Φ. The flux sensitivity is an exchange effect, which vanishes
only if the two single-particle wave functions do not overlap.
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Το measure the flux sensitivity in the shot noise due to the exchange
effect one can not simply use the ring geometry of Fig. 8: Because each
electron is fully transmitted the shot noise vanishes completely in a strong
magnetic field. (The case of weak magnetic field has been studied in Ref.
[132].) Büttiker [129] has suggested a four-terminal configuration, where the
correlator of the current at two terminals is measured using the other two
terminals äs current sources. Lesovik and Levitov [133] have proposed a two-
terminal configuration, but with a time-dependent magnetic field. Ideally,
the shot noise should show a flux sensitivity while the time-averaged current
should not. Observation of this effect remains an experimental challenge.

6. Cooper Pairs

6.1. NORMAL-METAL-SUPERCONDUCTOR JUNCTIONS

If a normal metal is connected to a superconductor, the dissipative normal
current is converted into dissipationless supercurrent. This conversion goes
through a process called Andreev reflection [134]: Incoming electrons are
reflected into outgoing holes, with the transfer of a Cooper pair into the
superconductor. Since the elementary charge transfer now involves a Charge
2e instead of e, one might expect a doubling of the shot noise in an NS
junction. Let us see how this follows from the theory [22, 74, 135].

We assume low temperatures and an applied voltage eV smaller than the
excitation gap Δ in the superconductor, so that the electrons and holes are
confined to the normal metal. The scattering from incoming into outgoing
states is described by the IN χ IN reflection matrix R,

= R ( M , R = ( r« r<* ] , (61)
\ h J \ rhe fhh J

where /e, I/,, Oe, Oh are the 7V-component vectors denoting the amplitudes
of the incoming (!) and outgoing (O) electron (e) and hole (h) modes. The
reflection matrix R can be decomposed in N x 7V submatrices, where e.g.
r he contains the reflection amplitudes from incoming electrons into outgoing
holes. The conductance [136, 137, 138] and the shot-noise power [135] are
given by

w
GNS = 2G0Trrher{e = 2G0^nn, (62)

n=l

N

PNS = 4P0Tl-rherl(l-rherl)=4P0^Kn(l-nn), (63)
n=l

with 7£n an eigenvalue of rherhe, evaluated at the Fermi energy.
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Figure 9 The shot-noise power (PNS) of a disordered NS junction with a barner at the
NS mterface (shown m the mset) äs a function of its length L, for barner transparencies
Γ = l, 0 9, 0 8, 0 6, 0 4, 0 2, < l from bottom to top For L = 0, {PNs> vanes with Γ
accordmg to Eq (67) If L increases it approaches the limitmg value (PNS) = fei for
each Γ (after Ref [135])

The eigenvalue Tin can be related to the scattering properties of the
normal region through the Bogoliubov-de Gennes equation [139], which is
a 2 χ 2 matrix Schrodinger equation for electron and hole wave functions
In the presence of time-reversal symmetry, 7£n can be expressed in terms
of the transmission eigenvalue Tn of the normal region [140]:

Substitution into Eqs (62) and (63) yields [135, 140]

N
2T2

^ (9 T ^2 'π=1 ^--M
N

(64)

(65)

(66)

As in the normal state, scattering channels which have Tn =· 0 or Tn = l
do not contribute to the shot noise. However, the way in which partially
transmitting channels contribute is entirely different from the normal state
result (18).

For a planar tunnel barrier (Tn = Γ for all n) one finds [22]

PNS =
16Γ2(1-Γ) _ 8(1

(2 - Γ)4 ~ (2 -Γ)
II2"-i Poisson j (67)
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which for Γ <C l simplifies to PNS = 4e/ = 2Pp0isson . This can be interpreted
äs an uncorrelated current of 2e-charged particles.

Since Eq. (66) is valid for arbitrary scattering region, we can easily
determine the average shot-noise power for a double-barrier junction in
series with a superconductor,

(-PNS) = (2 - JS12) ^Poisson , (68)
V (L l + L2> J

for a chaotic cavity in series with a superconductor,

2

'-Ppoisson , (69)

with χ = 4/V1JV2/(./V1 + -/V2)
2, and for a disordered NS junction [135],

(PNS) = -Ppoisson (70)

The average was computed with the densities (42), (46), and (51) of trans-
mission eigenvalues, respectively. The shot noise in a disordered NS junction
with a barrier at the NS Interface is plotted in Fig. 9. It makes the con-
nection between the results (67) and (70). We have indeed found that for
a high tunnel barrier and for a disordered NS junction the shot noise is
doubled with respect to the normal-state results. For other Systems, the
relation is more complicated.

More theoretical work on shot noise in NS Systems is given in Refs.
[141, 142, 143]. The effects of the Coulomb blockade on the shot noise in
low-capacitance NSN junctions are described in Refs. [144, 145]. With one
inconclusive exception [146], no experimental observation of shot noise in
NS junctions has been reported, yet.

6.2. JOSEPHSON JUNCTIONS

A Josephson junction contains two normal-metal-superconductor inter-
faces, with a phase difference φ of the superconducting order parameter.
Such an SNS junction sustains a current Ι(φ) in equilibrium, i.e. even
if the voltage difference V between the superconductors vanishes. Since
this supercurrent is a ground-state property, it can not fluctuate by it-
self. (It exhibits no shot noise.) Time-dependent fluctuations result from
quasiparticles which are excited at any finite temperature T. Their zero-
frequency power density P (φ) is related to the linear-response conductance
Ο(φ) = limy_>o 9Ι(φ}/3ν of the Josephson junction in the same way äs in
the normal state,

Ρ(φ) = ̂ ΤΟ(φ) , (71)
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cf. Eq. (2). A remarkable difference with Johnson-Nyquist noise in a nor-
mal metal is that P (φ) may actually increase with decreasing temperature,
because of the rapid increase of G (φ) when T —> 0. Because thermal noise
falls outside the scope of our review, we do not discuss this topic further.
The interested reader is referred to Refs. [147, 148].

7. Quantum Hall Effect

In a strong magnetic field the scattering channels of a two-dimensional
electron gas consist of edge states. Edge states at opposite edges propagate
in opposite directions. In the absence of scattering from one edge to the
other, each of the scattering channels at the Fermi level is transmitted with
probability Tn — 1. This is the regime of the (integer) quantum Hall effect.
(For reviews, see Refs. [8, 149].) The conductance G = (e2//i) ΣηΤη shows
plateaus at integer multiples of e 2 / h äs a function of magnetic field. The
implication for the shot-noise power P oc ΣηΤη(Ι — Tn) is that it should
vanish on the plateaus, similar to the Situation in a quantum point contact,
see See. 1.3.2.

Büttiker [26, 28] considered the noise in the four-terminal conductor
depicted in Fig. 10. It is assumed that the transmission probability of all
edge channels but one is reduced to zero by means of a gate across the con-
ductor. The remaining non-zero transmission probability is denoted by T.
A current flows between contacts l and 2 (voltage difference V), while con-
tacts 3 and 4 are voltage probes. This four-terminal configuration requires
a generalization of the two-terminal formulas of See. 1.2. The current Ia in
contact α is related to the voltages Vj, at the contact b by the scattering
matrix [18],

(72)

where we have assumed zero temperature. The correlator
00

Pab = 2 j dt (ΔΙβ(i + ίο)Δ/6(ί0)> (73)
—oo

of the current fluctuations in contacts a and b is given by [26, 28]

~' ' ' (74)

The prime in the summation over c and d means a restriction to terms with
Vc > Vj. The two-terminal formula (18) is recovered if c, d = a, b. Applica-
tion to the four-terminal geometry of Fig. 10 shows that Pa\, vanishes if α
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Figvre 10 Four-termmal conductor m the regime of the quantum Hall effect The spatial
location of the edge states is mdicated, äs well äs their direction of motion (solid hnes
with arrows) A barrier (shaded region) causes scattering from one edge to the other
(dashed hnes) The correspondmg scattering probabihties are mdicated

or b equals l or 3, while [26, 28]

P22 = Pu = -Pu = 2eV-T(l - T) . (75)

Equation (75) assumes that the voltages on all terminals are fixed, while
the current fluctuates in time. Usually, one measures voltage fluctuations at
fixed currents. Current and voltage are linearly related by Eq. (72), which
at low frequencies holds both for the time-average and for the fluctuations.
The resulting voltage-noise power measured between contacts l and 4 or
between contacts 2 and 3 is zero. The noise power measured between any
other pair of contacts equals 2eV(h/e2)(l - T)/T [26, 28]. The voltage
fluctuations divcrge äs T —> 0 with increasing barrier height. Experiments
in support of the edge-channel description of shot noise in the quantum
Hall effect have been reported by Washburn et al. [150].

If the magnetic field becomes so strong that only a single edge channel
rcmains at the Fermi level, one enters the regime of the fractional quantum
Hall effect. Plateaus in the conductance now occur at e^/mh, m = l, 3, 5 , . . .
(and at other odd-denominator fractions of e2//i äs well) [149]. The quasi-
particle excitations of the electron gas have a fractional Charge e* = e/m.
Since the shot noise, in contrast to the conductance, is sensitive to the
charge of the carriers, one might hope to be able to find evidence for frac-
tionally charged quasi-particles in shot-noise measurements. The theory
has been developed in Refs. [151, 152, 153]. For very low barrier heights,
Poisson noise with a fractional charge e* is expected in the backscattered
current (Imax — /i), with Jmax = (e*/h)eV the current in the absence of a
barrier. This yields for the shot noise

(76)
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cf. Eq. (2). A remarkable difference with Johnson-Nyquist noise in a nor-
mal metal is that P (φ) may actually increase with decreasing temperature,
because of the rapid increase of G (φ) when T -» 0. Because thermal noise
falls outside the scope of our review, we do not discuss this topic further.
The interested reader is referred to Refs. [147, 148].

7. Quantum Hall Effect

In a strong magnetic field the scattering channels of a two-dimensional
electron gas consist of edge states. Edge states at opposite edges propagate
in opposite directions. In the absence of scattering from one edge to the
other, each of the scattering channels at the Fermi level is transmitted with
probability Tn = 1. This is the regime of the (integer) quantum Hall effect.
(For reviews, see Refs. [8, 149].) The conductance G = (e2/h) ΣηΤη shows
plateaus at integer multiples of e2/h äs a function of magnetic field. The
implication for the shot-noise power P oc ΣηΤη(\ — Tn) is that it should
vanish on the plateaus, similar to the Situation in a quantum point contact,
see See. 1.3.2.

Büttiker [26, 28] considered the noise in the four-terminal conductor
depicted in Fig. 10. It is assumed that the transmission probability of all
edge channels but one is reduced to zero by means of a gate across the con-
ductor. The remaining non-zero transmission probability is denoted by T.
A current flows between contacts l and 2 (voltage difference V), while con-
tacts 3 and 4 are voltage probes. This four-terminal configuration requires
a generalization of the two-terminal formulas of See. 1.2. The current Ia in
contact α is related to the voltages V& at the contact b by the scattering
matrix [18],

'-
(72)

where we have assumed zero temperature. The correlator
oo

Pab = 2 j dt (Δ/α(ί + ί0)Δ/6(ί0)> (73)
— 00

of the current fluctuations in contacts a and b is given by [26, 28]

" ~' ' ' (74)

The prime in the summation over c and d means a restriction to terms with
Vc > V(i- The two-terminal formula (18) is recovered if c, d = a, b. Applica-
tion to the four-terminal geometry of Fig. 10 shows that Paf, vanishes if α
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Figure 10 Four-termmal conductor in the regime of the quantum Hall efFect The spatial
location of the edge states is indicated, äs well äs their direction of motion (solid hnes
with arrows) A barrier (shaded region) causes scattermg froni one edge to the other
(dashed hnes) The corrcsponding scattering probabihties are indicated

or b equals l or 3, while [26, 28]

P22 = P44 = -P24 = 2eV-T(l - T) . (75)

Equation (75) assumes that the voltages on all terminals are fixed, while
the current fluctuates in time. Usually, one measures voltage fluctuations at
fixed currents. Current and voltage are linearly related by Eq. (72), which
at low frequencies holds both for the time-average and for the fluctuations.
The resulting voltage-noise power measured between contacts l and 4 or
between contacts 2 and 3 is zero. The noise power measured between any
other pair of contacts equals 2eV(h/e2)(l - T)/T [26, 28]. The voltage
fluctuations diverge äs T —» 0 with increasing barrier height. Experiments
in support of the edge-channel description of shot noise in the quantum
Hall effect have been reported by Washburn et al. [150].

If the magnetic field becomes so strong that only a single edge channel
remains at the Fermi level, one enters the regime of the fractwnal quantum
Hall effect. Plateaus in the conductance now occur at e2/m/i, m = l, 3, 5 , . . .
(and at other odd-denominator fractions of e2/h äs well) [149]. The quasi-
particle excitations of the electron gas have a fractional charge e* = e/m.
Since the shot noise, in contrast to the conductance, is sensitive to the
charge of the carriers, one might hope to be able to find evidence for frac-
tionally charged quasi-particles in shot-noise measurements. The theory
has been developed in Refs. [151, 152, 153]. For very low barrier heights,
Poisson noise with a fractional charge e* is expected in the backscattered
current (Jmax — Ii), with Jmax = (e*/h)eV the current in the absence of a
barrier. This yiclds for the shot noise

= 2e*(Imax-/i). (76)
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For high barriers the usual Poisson noise P = 2e/i is recovered. Experi-
ments remain to be done.
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