65 research outputs found

    Ancient DNA Provides New Insights into the Evolutionary History of New Zealand's Extinct Giant Eagle

    Get PDF
    Prior to human settlement 700 years ago New Zealand had no terrestrial mammals—apart from three species of bats—instead, approximately 250 avian species dominated the ecosystem. At the top of the food chain was the extinct Haast's eagle, Harpagornis moorei. H. moorei (10–15 kg; 2–3 m wingspan) was 30%–40% heavier than the largest extant eagle (the harpy eagle, Harpia harpyja), and hunted moa up to 15 times its weight. In a dramatic example of morphological plasticity and rapid size increase, we show that the H. moorei was very closely related to one of the world's smallest extant eagles, which is one-tenth its mass. This spectacular evolutionary change illustrates the potential speed of size alteration within lineages of vertebrates, especially in island ecosystems

    The Environmental Dependence of Inbreeding Depression in a Wild Bird Population

    Get PDF
    BACKGROUND: Inbreeding depression occurs when the offspring produced as a result of matings between relatives show reduced fitness, and is generally understood as a consequence of the elevated expression of deleterious recessive alleles. How inbreeding depression varies across environments is of importance for the evolution of inbreeding avoidance behaviour, and for understanding extinction risks in small populations. However, inbreeding-by-environment (IxE) interactions have rarely been investigated in wild populations. METHODOLOGY/PRINCIPAL FINDINGS: We analysed 41 years of breeding events from a wild great tit (Parus major) population and used 11 measures of the environment to categorise environments as relatively good or poor, testing whether these measures influenced inbreeding depression. Although inbreeding always, and environmental quality often, significantly affected reproductive success, there was little evidence for statistically significant I x E interactions at the level of individual analyses. However, point estimates of the effect of the environment on inbreeding depression were sometimes considerable, and we show that variation in the magnitude of the I x E interaction across environments is consistent with the expectation that this interaction is more marked across environmental axes with a closer link to overall fitness, with the environmental dependence of inbreeding depression being elevated under such conditions. Hence, our analyses provide evidence for an environmental dependence of the inbreeding x environment interaction: effectively an I x E x E. CONCLUSIONS/SIGNIFICANCE: Overall, our analyses suggest that I x E interactions may be substantial in wild populations, when measured across relevant environmental contrasts, although their detection for single traits may require very large samples, or high rates of inbreeding

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Inbreeding and its avoidance in a wild bird population

    No full text
    Inbreeding occurs when relatives mate and have offspring. Inbreeding depression is hypothesized to have influenced the evolution of mating systems and behavioural mechanisms of inbreeding avoidance in the animal kingdom. Inbreeding in the wild is difficult to measure, as in order to build a pedigree allowing us to identify matings between relatives, the identity of as many as possible members of a population needs to be known. For a long time, the main source of knowledge about inbreeding depression was based on laboratory and agricultural studies, which did not reflect the array of environmental pressures wild populations have to cope with. In consequence, the deleterious consequences of inbreeding have often been underestimated. This is problematic because accurate estimates of the effect size of inbreeding depression are needed to study the strength of selection on inbreeding avoidance mechanisms, and are also of importance to conservation genetics. The aim of this thesis was to use pedigree data to infer the occurrence and effects of inbreeding using over forty years of breeding events of the great tit Parus major from Wytham Woods, Oxfordshire. The effects of inbreeding on fitness were investigated across a life-history continuum, and across environments. I found that close inbreeding (f=0.25) resulted in pronounced inbreeding depression, which acted independently on hatching success, fledging success, and recruitment success, and reduced the number of fledged grand-offspring by 55%. My results therefore suggest that estimates of fitness costs of inbreeding must focus on the entire life cycle. I also show that the variation in the strength of inbreeding depression varies across environments, particularly so the more the environmental variable considered is linked to fitness. These results emphasise the need of using relevant environmental contrasts when investigating inbreeding by environment interactions. I further asked whether individuals involved in matings with relatives differed relative to individuals mating with unrelated partners. I did not find any evidence for clear predictors of inbreeding, and I show that inbreeding depression in our population is entirely independent of any tendency for low quality parental genotypes, or phenotypes, to inbreed. Neither did I find any evidence for active inbreeding avoidance: great tits did not mate less often with kin than expected based on several scenarios of random mating, nor did I find increased rates of extra-pair paternity among birds breeding with relatives. In fact, I observed quite the contrary, as birds mating with kin exhibited a higher than average rate of close inbreeding relative to all scenarios of random mating investigated, showed lower rates of extra-pair paternity and divorce than birds mated to unrelated partners. I hypothesise that cases of occasional inbreeding in this population may result from mis-imprinting or a related process whereby some birds develop particularly strong bonds that are at odds with all predictions of avoiding inbreeding. Finally, I asked to what extent natal dispersal, a behaviour that is often hypothesized to play an important role in avoiding inbreeding, indeed reduces the likelihood of inbreeding. I found that male and female individuals breeding with a relative dispersed over several-fold shorter distances than those outbreeding. This led to a 3.4 fold increase (2.3-5, 95% CI) in the likelihood of close inbreeding relative to the population average when individuals dispersed less than 200m. This thesis demonstrates that inbreeding has deleterious effects on a wild population of birds, occurring throughout an individual’s life, and is of varying strength across environments. My findings strongly support the theory that natal dispersal should be considered as a mechanism of prime importance for inbreeding avoidance

    Inbreeding and its avoidance in a wild bird population

    No full text
    Inbreeding occurs when relatives mate and have offspring. Inbreeding depression is hypothesized to have influenced the evolution of mating systems and behavioural mechanisms of inbreeding avoidance in the animal kingdom. Inbreeding in the wild is difficult to measure, as in order to build a pedigree allowing us to identify matings between relatives, the identity of as many as possible members of a population needs to be known. For a long time, the main source of knowledge about inbreeding depression was based on laboratory and agricultural studies, which did not reflect the array of environmental pressures wild populations have to cope with. In consequence, the deleterious consequences of inbreeding have often been underestimated. This is problematic because accurate estimates of the effect size of inbreeding depression are needed to study the strength of selection on inbreeding avoidance mechanisms, and are also of importance to conservation genetics. The aim of this thesis was to use pedigree data to infer the occurrence and effects of inbreeding using over forty years of breeding events of the great tit Parus major from Wytham Woods, Oxfordshire. The effects of inbreeding on fitness were investigated across a life-history continuum, and across environments. I found that close inbreeding (f=0.25) resulted in pronounced inbreeding depression, which acted independently on hatching success, fledging success, and recruitment success, and reduced the number of fledged grand-offspring by 55%. My results therefore suggest that estimates of fitness costs of inbreeding must focus on the entire life cycle. I also show that the variation in the strength of inbreeding depression varies across environments, particularly so the more the environmental variable considered is linked to fitness. These results emphasise the need of using relevant environmental contrasts when investigating inbreeding by environment interactions. I further asked whether individuals involved in matings with relatives differed relative to individuals mating with unrelated partners. I did not find any evidence for clear predictors of inbreeding, and I show that inbreeding depression in our population is entirely independent of any tendency for low quality parental genotypes, or phenotypes, to inbreed. Neither did I find any evidence for active inbreeding avoidance: great tits did not mate less often with kin than expected based on several scenarios of random mating, nor did I find increased rates of extra-pair paternity among birds breeding with relatives. In fact, I observed quite the contrary, as birds mating with kin exhibited a higher than average rate of close inbreeding relative to all scenarios of random mating investigated, showed lower rates of extra-pair paternity and divorce than birds mated to unrelated partners. I hypothesise that cases of occasional inbreeding in this population may result from mis-imprinting or a related process whereby some birds develop particularly strong bonds that are at odds with all predictions of avoiding inbreeding. Finally, I asked to what extent natal dispersal, a behaviour that is often hypothesized to play an important role in avoiding inbreeding, indeed reduces the likelihood of inbreeding. I found that male and female individuals breeding with a relative dispersed over several-fold shorter distances than those outbreeding. This led to a 3.4 fold increase (2.3-5, 95% CI) in the likelihood of close inbreeding relative to the population average when individuals dispersed less than 200m. This thesis demonstrates that inbreeding has deleterious effects on a wild population of birds, occurring throughout an individual’s life, and is of varying strength across environments. My findings strongly support the theory that natal dispersal should be considered as a mechanism of prime importance for inbreeding avoidance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Dispersal as a means of inbreeding avoidance in a wild bird population

    No full text
    The long-term study of animal populations facilitates detailed analysis of processes otherwise difficult to measure, and whose significance may appear only when a large sample size from many years is available for analysis. For example, inbreeding is a rare event in most natural populations, and therefore many years of data are needed to estimate its effect on fitness. A key behaviour hypothesized to play an important role in avoiding inbreeding is natal dispersal. However, the functional significance of natal dispersal with respect to inbreeding has been much debated but subject to very few empirical tests. We analysed 44 years of data from a wild great tit Parus major population involving over 5000 natal dispersal events within Wytham Woods, UK. Individuals breeding with a relative dispersed over several-fold shorter distances than those outbreeding; within the class of inbreeding birds, increased inbreeding was associated with reduced dispersal distance, for both males and females. This led to a 3.4-fold increase (2.3–5, 95% CI) in the likelihood of close (f=0.25) inbreeding relative to the population average when individuals dispersed less than 200 m. In the light of our results, and published evidence showing little support for active inbreeding avoidance in vertebrates, we suggest that dispersal should be considered as a mechanism of prime importance for inbreeding avoidance in wild populations

    Data from: Quantifying human presence in a heterogeneous urban landscape

    No full text
    Humans are a keystone species in urban ecosystems. Although the impact of human activities is increasingly reported in behavioural and evolutionary ecology, little is known about the effects of physical human presence per se. Of particular relevance is the extent to which human presence (sometimes referred to as human disturbance), is repeatable across the urban mosaic over time. We quantified human presence at fixed locations - here in a 15 meters radius of great tit nestboxes – within 6 urban and suburban study sites. While overall human presence did not differ between urban sites, it was significantly higher than in the suburban village. Moreover, considerable variance between fixed locations was observed within each site. We reported overall high repeatability of human presence for all sites (0.57 < R < 0.88, mean: 0.76, median: 0.77). We further simulated datasets of human presence made of an increasing number of counts, and demonstrated that 10 counts of human presence (each 30-seconds long) made at each fixed location can generate a highly reliable indicator of human presence (R ≄ 0.6) for any urban site. We thus confirm that human presence is repeatable across the urban mosaic, thereby offering consistent cues to urban wildlife of human presence or absence in space and time. Importantly, our approach of human presence quantification allows for an effort-efficient approach to understand the effects of physical human presence at designated temporal timeframes, thereby allowing to reliably test the effects of human presence on the behaviour and ecology of urban wildlife

    data.Rcodes.Corsini2019

    No full text
    This data archive contains data and R codes used in "Quantifying human presence in a heterogeneous urban landscape"(2019): specifically, repeatability tests via rptR package and simulation analysis together with all databases needed to perform the tests are included
    • 

    corecore