102 research outputs found
Charge radii and electromagnetic moments of 195-211At
Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α-decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in At197,199, for which a significant difference in the charge radii for ground (9/2-) and isomeric (1/2+) states has been observed
Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity, locomotion and neuroanatomy from the South American fossil record
Fil: García, Rodolfo A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Salgado, Leonardo. Instituto de Investigación en Paleobiología y Geología. General Roca. Río Negro; ArgentinaFil: Fernández, Mariela. Inibioma-Centro Regional Universitario Bariloche. Bariloche. Río Negro; ArgentinaFil: Cerda, Ignacio A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Carabajal, Ariana Paulina. Museo Carmen Funes. Plaza Huincul. Neuquén; ArgentinaFil: Otero, Alejandro. Museo de La Plata. Universidad Nacional de La Plata; ArgentinaFil: Coria, Rodolfo A.. Instituto de Paleobiología y Geología. Universidad Nacional de Río Negro. Neuquén; ArgentinaFil: Fiorelli, Lucas E.. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica. Anillaco. La Rioja; Argentin
AD51B in Familial Breast Cancer
Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk
Measurement of Decay and
Using a sample of 3.3 million Upsilon(4S) -> BBbar events collected with the
CLEO II detector at the Cornell Electron Storage Ring (CESR), we measure the
branching fraction for B -> rho l nu, |V_ub|, and the partial rate (Delta
Gamma) in three bins of q^2 = (p_B-p_rho)^2. We find B(B^0 -> rho^- l^+
nu)=(2.69 +- 0.41^+0.35_-0.40 +- 0.50) 10^-4, |V_ub|=(3.23 +- 0.24^+0.23_-0.26
+- 0.58) 10^-3, Delta Gamma (0 < q^2 < 7 GeV^2/c^4) =(7.6 +- 3.0 ^+0.9_-1.2 +-
3.0) 10^-2 ns^-1, Delta Gamma (7 < q^2 < 14 GeV^2/c^4) =(4.8 +- 2.9 ^+0.7_-0.8
+- 0.7) 10^-2 ns^-1, and Delta Gamma (14 < q^2 < 21 GeV^2/c^4) = (7.1 +-
2.1^+0.9_-1.1 +- 0.6)10^-2 ns^-1. The quoted errors are statistical,
systematic, and theoretical. The method is sensitive primarily to B -> rho l nu
decays with leptons in the energy range above 2.3 GeV. Averaging with the
previously published CLEO results, we obtain B(B^0 -> rho^- l^+ nu) = (2.57 +-
0.29^+0.33_-0.46 +- 0.41) 10^-4 and |V_{ub}| = (3.25 +- 0.14 ^+0.21_-0.29 +-
0.55) 10^-3.Comment: 35 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model calculations
Neutron-deficient 177−185Hg isotopes were studied using in-source laser resonance-ionization spectroscopy at the CERN-ISOLDE radioactive ion-beam facility in an experiment combining different detection methods tailored to the studied isotopes. These include either α-decay tagging or multireflection time-of-flight gating for isotope identification. The endpoint of the odd-even nuclear shape staggering in mercury was observed directly by measuring for the first time the isotope shifts and hyperfine structures of 177−180Hg. Changes in the mean-square charge radii for all mentioned isotopes, magnetic dipole, and electric quadrupole moments of the odd-A isotopes and arguments in favor of I=7/2 spin assignment for 177,179Hg were deduced. Experimental results are compared with density functional theory (DFT) and Monte Carlo shell model (MCSM) calculations. DFT calculations using Skyrme parametrizations predict a jump in the charge radius around the neutron N=104 midshell, with an odd-even staggering pattern related to the coexistence of nearly degenerate oblate and prolate minima. This near-degeneracy is highly sensitive to many aspects of the effective interaction, a fact that renders perfect agreement with experiments out of reach for current functionals. Despite this inherent difficulty, the SLy5s1 and a modified UNEDF1SO parametrization predict a qualitatively correct staggering that is off by two neutron numbers. MCSM calculations of states with the experimental spins and parities show good agreement for both electromagnetic moments and the observed charge radii. A clear mechanism for the origin of shape staggering within this context is identified: a substantial change in occupancy of the proton πh9/2 and neutron νi13/2 orbitals
Extension of ThermoML: The IUPAC standard for thermodynamic data communications (IUPAC Recommendations 2011)
ThermoML is an XML-based approach for storage and exchange of experimental, predicted, and critically evaluated thermophysical and thermochemical property data. Extensions to the ThermoML schema for the representation of speciation, complex equilibria, and properties of biomaterials are described. The texts of 14 data files illustrating the new extensions are provided as Supplementary Information together with the complete text of the updated ThermoML schema
Microbial communities in the tonsils of healthy pigs
The tonsils of mammals such as humans and pigs are colonized with an extensive microbiota and are frequently the site for asymptomatic carriage of bacterial pathogens. The goal of this study was to determine the composition of the microbial community of the tonsils in healthy pigs. Tonsils were collected from eight pigs from two different healthy herds. Samples of the tonsils from each pig were used for culture dependent and culture independent identification of the microbial community. Aerobic cultivation identified Pasteurella multocida, Actinobacillus spp., Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus suis, Streptococcus dysgalactiae, and Escherichia coli from ≥ 50% of the pigs in both herds. For culture independent studies, microbial community members were identified by 16S rRNA sequences using the Ribosomal Database Project Pipeline programs developed at Michigan State University. Dominant genera identified by 16S rRNA analysis in pigs from both herds included Actinobacillus, Haemophilus, Pasteurella, Porphyromonas, Fusobacterium, Bacteroides, and Prevotella. These genera were detected in nearly every pig regardless of herd. In contrast, there was an asymmetric distribution of minor genera between the two herds, suggesting herd-specific differences in the microbial communities. In addition, we demonstrated primer bias between two frequently used forward primers when targeting the tonsillar community. Our results suggest that the major bacterial community members found in porcine tonsils are the same regardless of herd, while the minor species are unique to each herd. This is the first analysis using 16S rRNA sequence libraries of the composition of microbial communities in the porcine upper respiratory tract.Beth A. Lowe, Terence L. Marsh, Natasha Isaacs-Cosgrove, Roy N. Kirkwood, Matti Kiupel, Martha H. Mulk
Low-temperature photoluminescence of heavy-ion-implanted InGaP solid solutions
The photoluminescence spectra of samples of the solid solution In(0.5)Ga(0.5)P before and after implantation of high-energy nitrogen ions to doses of 1011−5×1012 cm−2 shows that the photoluminescence of the implanted (and annealed) samples may be the result of the formation of essentially one-dimensional semiconductor structures along the individual ion tracks
- …