26 research outputs found

    High resolution spatial variability in spring snowmelt for an Arctic shrub-tundra watershed

    Get PDF
    Arctic tundra environments are characterized by spatially heterogeneous end-of-winter snow cover because of high winds that erode, transport and deposit snow over the winter. This spatially variable end-of-winter snow cover subsequently influences the spatial and temporal variability of snowmelt and results in a patchy snowcover over the melt period. Documenting changes in both snow cover area (SCA) and snow water equivalent (SWE) during the spring melt is essential for understanding hydrological systems, but the lack of high-resolution SCA and SWE datasets that accurately capture micro-scale changes are not commonly available, and do not exist for the Canadian Arctic. This study applies high-resolution remote sensing measurements of SCA and SWE using a fixed-wing Unmanned Aerial System (UAS) to document snowcover changes over the snowmelt period for an Arctic tundra headwater catchment. Repeat measurements of SWE and SCA were obtained for four dominant land cover types (tundra, short shrub, tall shrub, and topographic drift) to provide observations of spatially distributed snowmelt patterns and basin-wide declines in SWE. High-resolution analysis of snowcover conditions over the melt reveal a strong relationship between land cover type, snow distribution, and snow ablation rates whereby shallow snowpacks found in tundra and short shrub regions feature rapid declines in SWE and SCA and became snow-free approximately 10 days earlier than deeper snowpacks. In contrast, tall shrub patches and topographic drift regions were characterized by large initial SWE values and featured a slow decline in SCA. Analysis of basin-wide declines in SCA and SWE reveal three distinct melt phases characterized by 1) low melt rates across a large area resulting in a minor change in SCA, but a very large decline in SWE with, 2) high melt rates resulting in drastic declines in both SCA and SWE, and 3) low melt rates over a small portion of the basin, resulting in little change to either SCA or SWE. The ability to capture high-resolution spatio-temporal changes to tundra snow cover furthers our understanding of the relative importance of various land cover types on the snowmelt timing and amount of runoff available to the hydrological system during the spring freshet

    Modulation of host responses by oral commensal bacteria.

    Get PDF
    Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR) signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules

    The Nutrition and Enjoyable Activity for Teen Girls (NEAT girls) randomized controlled trial for adolescent girls from disadvantaged secondary schools: rationale, study protocol, and baseline results

    Get PDF
    Background: Child and adolescent obesity predisposes individuals to an increased risk of morbidity and mortality from a range of lifestyle diseases. Although there is some evidence to suggest that rates of pediatric obesity have leveled off in recent years, this has not been the case among youth from low socioeconomic backgrounds. The purpose of this paper is to report the rationale, study design and baseline findings of a school-based obesity prevention program for low-active adolescent girls from disadvantaged secondary schools. Methods/Design: The Nutrition and Enjoyable Activity for Teen Girls (NEAT Girls) intervention will be evaluated using a group randomized controlled trial. NEAT Girls is a 12-month multi-component school-based intervention developed in reference to Social Cognitive Theory and includes enhanced school sport sessions, interactive seminars, nutrition workshops, lunch-time physical activity (PA) sessions, PA and nutrition handbooks, parent newsletters, pedometers for self-monitoring and text messaging for social support. The following variables were assessed at baseline and will be completed again at 12- and 24-months: adiposity, objectively measured PA, muscular fitness, time spent in sedentary behaviors, dietary intake, PA and nutrition social-cognitive mediators, physical self-perception and global self-esteem. Statistical analyses will follow intention-to-treat principles and hypothesized mediators of PA and nutrition behavior change will be explored. Discussion: NEAT Girls is an innovative intervention targeting low-active girls using evidence-based behavior change strategies and nutrition and PA messages and has the potential to prevent unhealthy weight gain and reduce the decline in physical activity and poor dietary habits associated with low socio-economic status. Few studies have reported the long-term effects of school-based obesity prevention programs and the current study has the potential to make an important contribution to the field

    Prospects for the development of probiotics and prebiotics for oral applications

    Get PDF
    There has been a paradigm shift towards an ecological and microbial community-based approach to understanding oral diseases. This has significant implications for approaches to therapy and has raised the possibility of developing novel strategies through manipulation of the resident oral microbiota and modulation of host immune responses. The increased popularity of using probiotic bacteria and/or prebiotic supplements to improve gastrointestinal health has prompted interest in the utility of this approach for oral applications. Evidence now suggests that probiotics may function not only by direct inhibition of, or enhanced competition with, pathogenic micro-organisms, but also by more subtle mechanisms including modulation of the mucosal immune system. Similarly, prebiotics could promote the growth of beneficial micro-organisms that comprise part of the resident microbiota. The evidence for the use of pro or prebiotics for the prevention of caries or periodontal diseases is reviewed, and issues that could arise from their use, as well as questions that still need to be answered, are raised. A complete understanding of the broad ecological changes induced in the mouth by probiotics or prebiotics will be essential to assess their long-term consequences for oral health and disease

    Allele-Specific, Age-Dependent and BMI-Associated DNA Methylation of Human MCHR1

    Get PDF
    Background: Melanin-concentrating hormone receptor 1 (MCHR1) plays a significant role in regulation of energy balance, food intake, physical activity and body weight in humans and rodents. Several association studies for human obesity showed contrary results concerning the SNPs rs133072 (G/A) and rs133073 (T/C), which localize to the first exon of MCHR1. The variations constitute two main haplotypes (GT, AC). Both SNPs affect CpG dinucleotides, whereby each haplotype contains a potential methylation site at one of the two SNP positions. In addition, 15 CpGs in close vicinity of these SNPs constitute a weak CpG island. Here, we studied whether DNA methylation in this sequence context may contribute to population- and age-specific effects of MCHR1 alleles in obesity. \ud Principal Findings: We analyzed DNA methylation of a 315 bp region of MCHR1 encompassing rs133072 and rs133073 and the CpG island in blood samples of 49 individuals by bisulfite sequencing. The AC haplotype shows a significantly higher methylation level than the GT haplotype. This allele-specific methylation is age-dependent. In young individuals (20â\u80\u9330 years) the difference in DNA methylation between haplotypes is significant; whereas in individuals older than 60 years it is not detectable. Interestingly, the GT allele shows a decrease in methylation status with increasing BMI, whereas the methylation of the AC allele is not associated with this phenotype. Heterozygous lymphoblastoid cell lines show the same pattern of allele-specific DNA methylation. The cell line, which exhibits the highest difference in methylation levels between both haplotypes, also shows allele-specific transcription of MCHR1, which can be abolished by treatment with the DNA\ud methylase inhibitor 5-aza-2'-deoxycytidine.\ud Conclusions:We show that DNA methylation at MCHR1 is allele-specific, age-dependent, BMI-associated and affects transcription. Conceivably, this epigenetic regulation contributes to the age- and/or population specific effects reported for MCHR1 in several human obesity studies.\ud \ud doi: 10.1371/journal.pone.0017711\u

    Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology

    Get PDF
    CCRN from the Natural Sciences and Engineering Research Council of Canada (NSERC) through their Climate Change and Atmospheric Research (CCAR) programPeer ReviewedThe interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land– hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Changes in lake drainage in the western Canadian Arctic

    No full text
    Nearly half of all Pan-Arctic lakes are situated in the Canadian Arctic, with many of these lakes being of thermokarst origin. Thermokarst lakes are sensitive to changes in the surrounding environment, making them useful indicators to examine the condition of hydrological systems in response to rapid climate warming, a trend which has been well observed in the Canadian Western Arctic. In this study, we use aerial photography to quantify lake area and count changes for lakes in the Inuvik-Tuktoyaktuk region, between 1950 and 2004. A combination of aerial photography and Landsat imagery were used in identifying drained thermokarst lake basins (DTLBs) between 1950 and 2019. In addition, we investigated the spatial relationship of DTLBs to surficial geology between 1950 and 2019. Comparing digitized datasets for 1950 and 2004, lakes decreased in number and increased in size. Associating DTLBs with an approximate time of drainage has indicated that the rate of lake drainage has increased dramatically in recent years. Kernel density estimation conducted on DTLB points revealed that there are several clusters where drained lakes have occurred. Further analysis revealed that most drained lake events occur on moraine sediments, with a disproportionate number of lake drainage events occurring on hummocky rolling moraine soils. With the establishment of long-term lake observations from our DTLB and digitized lake data, we demonstrate how lakes are responding to climate warming, revealing spatial and temporal correspondence of thermokarst development across the Inuvik-Tuktoyaktuk region

    Multi-level emulation of complex climate model responses to boundary forcing data

    Get PDF
    Climate model components involve both high-dimensional input and output fields. It is desirable to e ciently generate spatio-temporal out-puts of these models for applications in integrated assessment modelling or to assess the statistical relationship between such sets of inputs and outputs, for example, uncertainty analysis. However, the need for e ciency often compromises the fidelity of output through the use of low complexity models. Here, we develop a technique which combines statistical emulation with a dimensionality reduction technique to emulate a wide range of outputs from an atmospheric general circulation model, PLASIM, as functions of the boundary forcing prescribed by the ocean component of a lower complexity climate model, GENIE-1. Although accurate and detailed spatial information on atmospheric variables such as precipitation and wind speed is well beyond the capability of GENIE-1’s energy-moisture balance model of the atmosphere, this study demonstrates that the output of this model is useful in predicting PLASIM’s spatio-temporal fields through multi-level emulation. Meaningful information from the fast model, GENIE-1 was extracted by utilising the correlation between variables of the same type in the two models and between variables of di↵erent types in PLASIM. We present here the construction and validation of several PLASIM variable emulators and discuss their potential use in developing a hybrid model with statistical components
    corecore