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Abstract Climate model components involve both high-dimensional input1

and output fields. It is desirable to efficiently generate spatio-temporal out-2

puts of these models for applications in integrated assessment modelling or3

to assess the statistical relationship between such sets of inputs and outputs,4

for example, uncertainty analysis. However, the need for efficiency often com-5

promises the fidelity of output through the use of low complexity models.6

Here, we develop a technique which combines statistical emulation with a di-7

mensionality reduction technique to emulate a wide range of outputs from an8

atmospheric general circulation model, PLASIM, as functions of the bound-9

ary forcing prescribed by the ocean component of a lower complexity climate10

model, GENIE-1. Although accurate and detailed spatial information on at-11

mospheric variables such as precipitation and wind speed is well beyond the12

capability of GENIE-1’s energy-moisture balance model of the atmosphere,13

this study demonstrates that the output of this model is useful in predicting14

PLASIM’s spatio-temporal fields through multi-level emulation. Meaningful15

information from the fast model, GENIE-1 was extracted by utilising the cor-16

relation between variables of the same type in the two models and between17

G. T. Tran · K. I. C. Oliver
Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
E-mail: gtran@geomar.de
Present address of G. T. Tran: GEOMAR Helmholtz Centre for Ocean Research Kiel,
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variables of different types in PLASIM. We present here the construction and18

validation of several PLASIM variable emulators and discuss their potential19

use in developing a hybrid model with statistical components.20

Keywords Probabilistic prediction · multi-level emulators · model hierarchy ·21

spatio-temporal data · intermediate complexity model22

1 Introduction23

Climate models describe a set of rules which convert a given forcing into a24

response. Complex feedbacks in the climate system modify this basic forcing-25

response relationship. As a result, the model outcomes are uncertain even26

though the model is deterministic. Due to their computational expense, we27

often cannot evaluate the model enough times to provide a good statistical28

analysis of the model’s behaviour. In such a situation, statistical emulators,29

also referred to as surrogate models, are often used to provide estimations30

of the outputs produced by a model given a specific set of input parameters31

[48, 50]. A Gaussian process (GP) emulator combines our prior judgments32

about the model’s behaviour with data from simulations to predict some de-33

sirable outputs of the climate model. Once constructed and validated, emulator34

predictions can be obtained at low cost without the need for further evaluation35

of the climate model. It is worth noting that the emulator is only valid within36

the input space it was designed for and cannot be used to replace the physical37

model beyond this space.38

Within the designed input space, the emulator’s ability to generate a large39

amount of predictions makes it a valuable tool in many applications that have40

previously been limited by computational speed, such as: to study the model’s41

behaviour in a large parameter space [23], to perform sensitivity analysis of42

a variable to certain inputs [42, 6], uncertainty quantification [30], calibration43

[28, 4] and precalibration/history matching [12, 59]. In situations where the44

computation cost remains a limitation, multi-level emulation techniques [27,45

14] can be used to further reduce the number of simulations needed [56]. This is46

applicable when a lower complexity model of the same physical system exists.47

The majority of the studies mentioned above have focused on problems48

involving scalar inputs and outputs. However, it is often the case that we are49

interested in the spatial distribution of the climatic outputs or how they evolve50

over time. Dimension reduction techniques (most commonly, principal compo-51

nent analysis; PCA) have been introduced to enable emulation of 2-D outputs52

[40, 21, 58], spatio-temporal outputs [24], time series [7] and multivariate out-53

puts [5].54

While much effort has been dedicated to reducing the dimensionality of55

model outputs, relatively few have attempted to do the same on model in-56

puts such as 2-D boundary/initial conditions, which are often an unquantified57

source of uncertainty. One example is [25], where the linear decomposition58

technique, PCA, was employed to reduce the dimensionality of the 2-D input59
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fields (sea surface temperature and precipitation) and the output field (vege-60

tation) of a vegetation model. The relationship between the component scores61

obtained from decomposing the input and output fields are emulated using a62

regression model. A statistical model that relates high-dimensional input to63

high-dimensional output can be useful in producing a fast prediction of the64

output or to clarify the relationship between the input-output pairs. Here we65

list some examples in which such emulators could be beneficial:66

1. To assess the uncertainty introduced by high-dimensional boundary forcing67

or initial conditions through a smaller set of latent variables obtained by68

dimensional reduction. Similarly, to obtain the sensitivity of 2-D surface69

outputs to the same boundary/initial conditions. This is the case when70

high-dimensional climate variables from a separate model or observations71

are used as the boundary forcing condition. Examples include aerosols and72

human land-use change for climate impact projections or ice-sheet height73

and extent for simulations of past climate.74

2. To improve our understanding of the relationship between high-dimensional75

climate variables. For example, instead of predicting and assessing model76

outputs as functions of numerical model parameters which sometimes do77

not correspond to real physical processes, we can relate a variable of inter-78

est (e.g. vegetation) directly to other observable quantities (e.g. temper-79

ature or precipitation). A specific change in the vegetation field can now80

be understood and quantified in terms of different modes of variability in81

temperature or precipitation.82

3. To enable coupling between models or model components which involve83

the exchange of high-dimensional flux fields. For example, in studies with84

a focus on the ocean dynamics over long timescales, an ocean general cir-85

culation model (OGCM) is often coupled with a simple atmosphere since a86

fully coupled GCM would require significantly more computing power and87

time to integrate. By emulating the atmospheric fluxes into the ocean as88

a function of the input exchange fields from the ocean to the atmosphere,89

an efficient coupling between the OGCM and emulators of a complex at-90

mospheric model can be obtained. This approach can potentially offer a91

more realistic representation of the forcing fields than otherwise obtained,92

without being computationally intensive.93

In this work, we bring together multi-level emulation and dimension re-94

duction of the spatio-temporal boundary forcing described by the ocean com-95

ponent of a climate model (GENIE-1) to provide estimations of several 2-D96

output fields from an AGCM (PLASIM). This builds on the work described97

in [56], in which the dimensionally reduced surface air temperature from these98

two models of different complexity was emulated as a function of GENIE-99

1’s scalar input parameters using a multi-level Gaussian process emulation100

technique called co-kriging. By emulating the output of the lower complexity101

atmospheric component of GENIE-1 and the relationship between outputs of102

the two models, an emulator of PLASIM’s annual mean surface air temper-103

ature (SAT) was obtained using a relatively small number of PLASIM simu-104
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lations. PCA was employed to reduce the dimensionality of the surface field.105

Furthermore, combined PCA is introduced to emulate various PLASIM fields106

in addition to SAT.107

The PLASIM variables we emulate are the surface field of specific humid-108

ity, precipitation, zonal and meridional wind speed. These variables are chosen109

because they are more challenging to emulate compared to SAT since these110

fields, with the exception of humidity, are not as strongly constrained by the111

provided sea surface temperature (SST). Moreover, the multi-level method in-112

troduced in the previous paper [56] is not immediately applicable in this case113

since the fields we are interested in might not have a direct fast approxima-114

tion in GENIE-1. Here we consider three different situations: i) Humidity is115

simulated in GENIE-1 and is likely to be suitable as the fast approximation of116

PLASIM’s humidity. ii) While present in both models, precipitation is poorly117

represented in GENIE-1 and it’s unlikely that GENIE-1’s precipitation con-118

tains very useful information on PLASIM’s field. iii) Unlike these two, surface119

winds are not simulated in GENIE-1. Therefore, there is no direct fast ap-120

proximation of PLASIM winds in GENIE-1. In this work, we demonstrate the121

modifications to our previously established multi-level emulation technique so122

that it can be applied to all the three cases stated above.123

Table 1 provides a summary of all the steps taken in this work. The sec-124

ond column contains a description of each procedure while the third column125

lists the section in which the procedure is discussed. The bold steps refer to126

the essential tasks of building our final emulators while the remaining are op-127

tional. Step 5 and 6 are conducted to provide comparisons between the single128

and multi-level emulation techniques. Step 9 and 10 involve the use of an in-129

dependent ensemble for emulator validation. It is possible to validate using a130

leave-one-out cross-validation instead hence these steps are only optional.131

2 Model descriptions and experiment design132

2.1 Models133

In this work, we employ two climate models of different complexity. The main134

focus is an AGCM which is the atmospheric component of the Planet Simulator135

(PlaSim), developed at the University of Hamburg [16, 15]. PlaSim consists136

of a fully dynamical 3-D atmosphere based on the Portable University Model137

of Atmosphere (PUMA), coupled with a 2-D mixed layer ocean. PlaSim and138

PUMA have previously been employed to study the effect of mountains on139

the ocean circulation [51], the role of oceanic heat transport and orography on140

glacial climate [47], the interactions between stationary waves and continental141

ice sheets [32] and the global energy and entropy budget in a snowball Earth142

hysteresis [34].143

The atmosphere of PlaSim is a coarse resolution AGCM which is based on144

the moist primitive equations representing conservation of momentum, mass,145

energy, and moisture on a terrain-following σ-coordinate system. The equa-146
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Table 1 A summary of the steps taken to construct and validate emulators of PLASIM’s
atmospheric variables and the sections describing them in this paper. Step 5 and 6 (marked
with an asterisk in the section column) are performed to compare the single and multi-level
emulator performance and are not explicitly described in this work. The steps in bold are
necessary to the statistical technique presented here. Readers who wish to apply the same
method should carry out the equivalent of these steps. While validation is also a necessary
step, step 9 is not indicated as such since we use independent validation data in this work.
It is possible to validate the emulators using a leave-one-out cross-validation instead.

Procedure Section
1 Obtain 200 simulations with fast, fully coupled, Earth

system model of intermediate complexity (GENIE-1)
2.2 and 3.1

2 Build EOFs of surface ocean conditions and surface air
temperature in GENIE-1

3.2

3 Build statistical emulator of GENIE-1 atmosphere, relating
inputs (CO2, ice sheet configuration, principal components
of surface ocean conditions) to output (principal
components of surface air-temperature)

4

4 Obtain 90 simulations with expensive atmospheric model
(PLASIM), forced by CO2, ice-sheet configuration, and
surface ocean conditions from a subset of GENIE-1
ensemble

2.2 and 3.1

5 Kriging Step 1: Build EOFs of atmospheric conditions (humidity,
precipitation, winds) in PLASIM

∗

6 Kriging Step 2: Build statistical emulator of PLASIM atmosphere,
relating inputs (CO2, ice sheet configuration, principal components
of surface ocean conditions) to output (principal components of
humidity, precipitation, winds)

∗

7 Co-kriging Step 1: Build combined EOFs of atmospheric
conditions (SAT and humidity, SAT and precipitation, SAT
and zonal winds, SAT and meridional winds)

6

8 Co-kriging Step 2: Build statistical emulator of PLASIM
atmosphere, making use of output from, and emulator of,
GENIE-1 atmosphere

6

9 Obtain 214 simulations with PLASIM, used to generate independent
validation data

2.2

10 Use of validation data to assess relative performance of
kriging and co-kriging

7

tions are written in spherical coordinates and solved using the spectral trans-147

form method. It contains parameterizations of unresolved processes consisting148

of short and long wave radiation, with the inclusion of the greenhouse gas effect149

of water vapour, carbon dioxide, and ozone. Other parameterized processes in-150

clude moist processes with an interactive cloud, boundary layer heat fluxes and151

diffusion. We run the model at a T21 grid of 64× 32 cells, which corresponds152

approximately to a 5.6◦ × 5.6◦ grid, and 10 vertical levels. The interaction153

with other climate subcomponents is enabled by adding reduced models for154

ocean, sea-ice and land-surface processes. Here, the simple 2-D mixed layer155

ocean and sea-ice subcomponents are replaced by the prescribed 2-D bound-156

ary forcing fields obtained from a separate model, GENIE-1 (described below).157

Also, we use a PlaSim implementation in which the land-surface model, ENTS158

from GENIE is employed instead of the subcomponent provided by PlaSim.159

This version is referred to as PLASIM-ENTS (efficient numerical terrestrial160
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scheme) and was described in [24]. PlaSim has been employed in the past with161

prescribed climatological SST [18] or coupled to a different ocean [51]. Emu-162

lators of PLASIM-ENTS have been used in an integrated assessment model163

[13, 29]. We refer to the specific configuration used in this work as PLASIM,164

where the atmosphere and land component PLASIM-ENTS is used without165

the remaining subcomponents.166

Also used is the Grid-ENabled Integrated Earth system modelling (GE-167

NIE) framework [31], an Earth system model of intermediate complexity (EMIC)168

designed to perform long integrations to investigate glacial climate. The con-169

figuration used in this work is commonly known as GENIE-1, which consists170

of a 2-D energy-moisture balance model (EMBM) of the atmosphere [11], a 3-171

D frictional geostrophic ocean (GOLDSTEIN; [11]), dynamic-thermodynamic172

sea ice, and a land surface physics and terrestrial carbon cycle model (ENTS;173

[60]). The model is on a near-equal increment mesh (equal increments in lon-174

gitude of 5.625◦ and similar near-equal increments of latitude) of 64× 32 grid175

points. A full description of the model can be found in [38, 11] and refer-176

ences therein. The EMBM of the atmosphere is based on the atmosphere of177

the UVic Earth system model [57], which includes the representations of the178

surface exchange of heat and moisture with the ocean, sea ice, and land, hor-179

izontal transport of heat and moisture in the atmosphere by diffusion and180

advection, and precipitation above a relative humidity threshold. The GOLD-181

STEIN ocean incorporates the surface input of momentum from the surface182

wind stress and transport of heat and salinity through the combined parame-183

terization for eddy-induced advection and isopycnal mixing. The ocean com-184

ponent has 16 exactly logarithmically-spaced levels with a maximum depth185

of 5000 m. The sea-ice model, based on the sea ice implemented in the UVic186

model, includes horizontal transport of sea-ice concentration and thickness,187

surface exchange of heat and freshwater with the atmosphere and the ocean.188

ENTS models vegetative and soil carbon densities, assuming a single plant189

functional type that has a double-peaked temperature response (representing190

boreal and tropical forests).191

GENIE-1 has been designed for model integration on millennial timescales192

to investigate past climate changes [35], long-term response of the carbon cycle193

[31] and for large ensemble studies [22, 12]. Compared to PLASIM, the 2-D194

atmosphere of GENIE-1 is much simpler and does not resolve synoptic activity195

and hence does not excite multidecadal oscillations in the ocean circulation. As196

a result, outputs from quasi-steady-state simulations conducted with GENIE-1197

have low variability.198

The higher complexity model PLASIM simulates better climatology than199

the EMBM of GENIE-1. However, it lacks dynamic representations of the200

ocean and sea-ice. A fully coupled PLASIM-GENIE was recently developed201

by [26] but in this work, PLASIM is driven by prognostic variables supplied202

by GENIE-1’s ocean and sea ice to i) demonstrate the statistical technique203

and ii) save computational cost as the atmosphere is two orders of magnitude204

more costly to run than the ocean. The variables used to drive PLASIM atmo-205

sphere are the monthly 2D sea surface temperature (SST), sea-ice fractional206



Cross-variable emulation 7

area (SIC) and sea-ice thickness (SIH). The lack of multidecadal variations in207

the ocean circulation also influences the variability of PLASIM’s atmospheric208

response. This is not a major concern here since we are focusing only on the209

mean steady state. In this work, our target is to emulate PLASIM’s climate,210

and thus, the output of this model is treated as reality. The climate from211

GENIE-1’s EMBM, on the other hand, is considered as a ‘fast approxima-212

tion’ of that of PLASIM. This implies that due to the lower complexity of the213

processes represented in EMBM, the resulting climate, while can be obtained214

faster and required much less computational power, is of lower fidelity com-215

pared to that of PLASIM. The following section provides a short description216

of our experimental design which was provided with more details in [56].217

2.2 Experiment design218

To build a single level emulator, also known as a kriging emulator, an ensemble219

of simulations is needed to condition the GP describing the prior judgements.220

This ensemble is referred to as the training ensemble. Once constructed, the221

emulator is validated to ensure that it is capable of producing reliable approx-222

imations of the climate model output. To do this, a separate validation ensem-223

ble is used. For the multi-level emulation technique using both GENIE-1 and224

PLASIM data, two training and two validating ensembles are produced. First225

two, a training and a validation, maximin Latin hypercube sampling plans [41]226

are generated with 12 GENIE-1 model parameters perturbed. Quasi-steady-227

state simulations of 5000-year length are first performed in GENIE-1. The228

resulting monthly SST, SIC and SIH are then supplied to PLASIM, driving229

the atmosphere for another 35 years. Thus, each Latin hypercube sampling230

plan generates a GENIE-1 and a corresponding PLASIM ensemble.231

The 12 model parameters are the inputs of GENIE-1 (Table 2). The outputs232

we are interested in are the surface air temperature, sea surface temperature233

and two sea ice fields. The inputs of PLASIM are the surface ocean and sea234

ice boundary forcing fields prescribed by GENIE-1, together with ice sheet235

configuration and CO2 concentration. The PLASIM’s variables to be emulated236

are surface air temperature, surface specific humidity, precipitation rate and237

the two surface wind components.238

In this work, we utilised previously generated ensembles: the training en-239

sembles of 600 members and the validation ensembles of 214 members. The240

perturbed GENIE-1’s parameters and their ranges (Table 2) are based on the241

previous designs used in [22] with adjustments made due to the use of a differ-242

ent model resolution. A sensitivity test showed that 600 simulations are more243

than adequate to produce a good emulator. As a result, only small subsets of244

this initial ensemble are used to construct the emulator. The final number of245

simulations used are described in Section 3.1. The sensitivity test and the sub-246

sampling method used are briefly described in [56]. More detailed information247

can be found in [55].248
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Table 2 Ten of the 12 chosen parameters, with the exception of ICF and RFC, are taken
from an ensemble design used in [22]. The ranges were initially based on those used in the
same study. However, adjustments are needed since the model is run at 64 × 32 horizontal
resolution here compared to the previously used 36 × 36 mesh. The ranges shown below
are obtained after an initial exploratory ensemble. The distribution specifies whether their
values (Lin) or the log of their values to base 10 (Log) are used to generate the sampling
plans.

Code Parameter Min Max Dist.

1 ICF Ice sheet and orography configuration (no unit) 0 21 Lin
2 OHD Ocean isopycnal diffusivity (m2 s−1) 300 4000 Log
3 OVD Ocean diapycnal diffusivity (m2 s−1) 5 × 10−6 2 × 10−4 Log
4 ODC Ocean friction coefficient (days−1) 0.5 3 Lin
5 WSF Wind scale coefficient 1 3 Lin
6 AHD Atmospheric heat diffusivity (m2 s−1) 4 × 106 7.0 × 106 Log
7 AMD Atmospheric moisture diffusivity (m2 s−1) 5 × 104 6 × 106 Log
8 APM Atlantic-Pacific freshwater flux (Sv) 0.032 0.640 Lin
9 RMX Relative humidity threshold for precipitation 0.6 0.9 Lin
10 OL0 Clear skies OLR reduction (W m−2) 0 10 Lin
11 OL1 OLR feedback (W m−2 K−1) −0.5 0.5 Lin
12 RFC CO2 forcing (ppm) 150 1400 Lin

The perturbed parameters include a numerical description of the changes249

in glacial mask and orography over the last 21000 years (ICF) and the at-250

mospheric CO2 concentration (RFC). ICF represents the boundary condition251

of the glacier coverage as well as the corresponding orography and albedo at252

different snapshots in time extending from the present (0 kyr before present)253

to the Last Glacial Maximum (LGM) (21 kyr before present) with steps of 1254

kyr. Each value of ICF corresponds to a spatial distribution of land ice at a255

certain period according to the Peltier reconstruction ICE-5G [44]. The most256

prominent features of the land ice configuration are the extent and height257

of the Laurentide ice sheet over North America and the Fennoscandian over258

northern Europe. It is worth noting that the glacial configuration and CO2259

concentration are varied independently. Thus, it is possible for a simulation to260

have, for example, Last Glacial Maximum ice configuration and preindustrial261

CO2 concentration at the same time. Other parameters control processes in262

the atmosphere and the ocean. Only ICF and RFC are also varied in PLASIM.263

Other PLASIM parameters are fixed at default values [18].264

Mixing and transport in the ocean are controlled by the isopycnal and di-265

apycnal diffusivity parameters (OHD and OVD, respectively), a momentum266

drag coefficient (ODC) and a wind scaling factor (WSF). APM is a flux correc-267

tion responsible for transporting fresh water from the Atlantic to the Pacific,268

affecting deep-water sinking in the North Atlantic and hence the strength of the269

AMOC. The uncertain impact of atmospheric transport is captured through270

atmospheric heat and moisture diffusivity parameters (AHD and AMD, re-271

spectively) [11]. OL0 and OL1 modify the outgoing long-wave radiation and272

are included to allow for uncertainty due to cloud coverage and its dependence273

on a change in the global average SAT [54, 39]. RMX is the threshold value of274
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relative humidity for precipitation, capturing the uncertainty in water vapour275

feedbacks [31].276

The atmospheric outputs of each PLASIM simulation are averaged over277

the last 30 simulation years while the outputs of GENIE-1 are taken from the278

final model year of the steady-state simulations. As discussed before, due to279

the simplicity of GENIE-1, there is negligible interannual variability within280

the model after a 5000-year integration.281

3 Statistical method282

3.1 Emulator description283

The Gaussian process emulation technique is employed in this work to emu-284

late atmospheric variables of PLASIM. Our statistical emulator describes the285

data as a global linear model with the residuals being modelled by a GP. The286

standard kriging emulation technique employed here assumes a constant mean287

function. However, to diagnose and interpret the contribution of each emulator288

input to the global trend, a single level GP emulation technique with linear289

mean functions (universal kriging) is also employed. Universal kriging models290

the simulator response as a sum of a mean response function and a zero-mean291

GP. The mean response function is a linear combination of regressions whose292

coefficients can be useful in interpreting the model’s behaviour. In our en-293

semble, the dominating influence from CO2 concentration on global annual294

mean SAT is approximately linear over the input space so this linear form is295

a suitable choice. In cases where no dominant linear trend is found, the uni-296

versal kriging emulator becomes a standard kriging emulator with a constant297

mean function. In our previous experience with emulators of PLASIM and298

GENIE-1, the standard technique slightly outperforms universal kriging, thus299

it is used to construct the final emulators here. This is perhaps an indication300

that the linear structure assumed might not hold for the all input-output re-301

lationships. Nevertheless, the regression coefficients are useful in interpreting302

model outputs as shown in Section 4.2303

Co-kriging is the multi-level extension to the standard single-level kriging304

technique, which is applicable when a faster simulator of the same physical305

system is available. When only a small number of expensive simulations are306

available, it has been shown that by combining these with a large number of307

cheaper runs from a simplified code, an emulator of the expensive model can308

be built at a lower cost [14]. Potentially, this method can be extended to more309

code levels [27]. The expensive model’s output, fe, is modelled as a GP of310

its fast approximation, fc, multiplied by a scaling factor, ρ, plus a separate311

GP, fd, describing the stochastic residual of the expensive model [27, 14]. This312

approach is referred to as the single multiplier approach:313

fe(x) = ρfc(x) + fd(x), (1)
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We use ne simulations from PLASIM and a larger number of simulations,314

nc, from GENIE-1 to train our co-kriging emulators. To identify the relation-315

ship between the two models, ne is chosen to be a subset of nc, meaning that316

we have information on both PLASIM’s and GENIE-1’s behaviours at the317

same ne input combinations. In a previous study which used the same ensem-318

bles, we determined that nc = 200 and ne = 90 are sufficient to construct319

a good SAT emulator. Thus, the same number of simulations are used here.320

All the simulations used are subsampled from the initial 600-member training321

ensemble. The details on how these numbers were determined can be found in322

[56] and [55].323

A mathematical description of the emulators used can be found in the324

Appendix. The co-kriging emulators in this work were constructed using the325

toolbox provided by [14].326

3.2 Dimensional reduction using principal component analysis327

Many studies have been done on extending from univariate GP emulation to328

handle multivariate outputs, most commonly through a dimension-reducing329

technique. There are a large number of linear and non-linear dimensional re-330

duction techniques. These techniques reduce the dimensionality of a data set331

by embedding this data into a subspace of lower dimensionality. Among these332

methods, PCA is the most commonly used as this method is quick and has the333

advantage that the first few components explain the majority of the variance334

across the ensemble [20, 21, 58, 7]. [7] used PCA to reduce the time dimension335

of AMOC time series while [25] employed the same technique to reduce both336

the spatial and temporal dimension of their SAT field, allowing them to emu-337

late the response of the climate system at different time slices. Other methods338

for reducing the dimensionality of the simulator’s inputs prior to emulation339

are discussed in [36].340

Each surface output field is reshaped into an m × 1 vector, where m is341

the total number of grid points. In the case of a single output from PLASIM,342

m = 64× 32 = 2048. By concatenating vectors of all training points together,343

we form an m× n matrix U, where n is the number of training points.344

A singular value decomposition (SVD) can be applied directly on any m×n345

matrix U, giving346

U = LSRT, (2)

where L and R are the matrices of left and right singular vectors, respectively;347

S is the diagonal matrix of singular values. The matrix L is the matrix of348

eigenfunctions, referred to as the empirical orthogonal functions (EOFs). The349

right singular vectors are sometimes referred to as the component scores. The350

principal components (PCs) can be obtained from these scores as follows:351

Z = SRT. (3)

The terminology of PCA is not consistent in literature, especially across352

different research fields. In this work, we adopt the convention of referring353
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to the eigenvectors, which in this case are the spatial patterns, as the EOFs354

and the coefficients that scale these patterns as the principal components.355

Any simulated field can be constructed as a linear combination of the EOFs,356

weighted by their respective series of PCs. Each m×1 column of L is an EOF,357

describing a map or a mode of variation in the ensemble. A simulated field is358

thus completely described by the set of coefficients of the EOFs, for instance,359

the training points in the matrix U are defined by the corresponding n × 1360

columns of Z.361

We can use PCA via SVD for dimensional reduction of a 2-D data set. The362

ith grid cell of the jth field from U can be written as363

Ûij =

q∑
k=1

LikSkkR
T
kj , (4)

where q is the number of modes retained. When q = m, Ûij ≡ Uij , otherwise,364

Ûij is an approximation of Uij .365

The top few (or low order) EOFs often explain most of the variance in366

the data such that the dimension of U can be reduced by keeping only the367

first q components (q � m). In this work, the PCs are treated as latent368

variables, replacing the high-dimensional 2-D field as inputs and outputs of369

the emulators. The n elements (or indices) of each component score correspond370

to the n simulations used as training data. Emulators are built for the first q371

PCs, providing an estimation of Ẑ, for any untried input combination. They372

are then used to reconstruct the final prediction, Û of the emulated field.373

The prediction, Û, is different from the simulated value of U by an error374

component, which can be decomposed into truncation error and component375

error. Truncation error is due to dimensional reduction. This is kept low by376

making sure that enough EOFs are retained to explain most of the variance in377

the ensemble. Although there is no definite rule on what percentage explained378

would be sufficient, a high value such as 90% for SAT should be satisfactory.379

This value might be lower for other variables with larger internal variability.380

The component error is a result of imperfect estimations by the emulator which381

can be reduced by using more training points. The GP emulator provides an382

estimate of this error.383

4 Dimensional reduction of PLASIM inputs384

4.1 Decomposing the surface forcing fields385

All the high-dimensional inputs (SST, SIC and SIH) and outputs (SAT, pre-386

cipitation, surface wind speeds and humidity) concerned in this work are 2-D387

fields. As seen in the previous section, each surface field contains 64× 32 grid388

cells and can be reshaped into a 2048× 1 state vector. Since we are interested389

in the capturing the seasonal variation, for each variable, there are now 12390

vectors corresponding to 12 calendar months for each simulation run.391
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Following [25], for each atmospheric variable of each ensemble member,392

a new state vector is constructed by concatenating together all 12 vectors393

vertically, giving a spatio-temporal field U = [U1, · · · ,U12], which has the394

dimension of 24576× 1. A training set of n members can be represented as a395

24576×n matrix. PCA is then performed, via SVD, on this new matrix in the396

same way as before.397

The initial conditions driving each PLASIM simulation are provided by398

GOLDSTEIN’s three prognostic variables, SST, SIC and SIH. Therefore, the399

total dimension of our new input fields is 64 × 32 × 12 × 3 = 73728. Clearly,400

without reducing the dimensionality of the input fields, emulation would not401

be practical. Fortunately, we can utilise the correlation structures in space402

and/or time within a single variable as well as between variables of different403

types (e.g. between SST and SIC) to reduce their dimension via PCA to a404

smaller and more manageable set of inputs. The importance of the inputs,405

currently spread among the 73728 dimensions, are redistributed within a new406

set of latent variables in which the first few variables explain the majority of the407

variation across the ensemble, allowing redundant information to be identified408

and removed. The PLASIM outputs to be emulated are denoted as as Up and409

the input for emulator are Wk
g , with k = 1, 2, 3 corresponding to GENIE-410

1’s SST, SIC and SIH respectively. The subscript g and p denotes GENIE-1411

and PLASIM, respectively. Since Wk
g only exist in oceanic grid cells, the land412

mask is removed from these fields, leaving the matrix Wk
g with the dimension413

of 16332× n. PCA is then applied to each field independently, giving:414

Wk
g = LkgSkgRk

g

T
. (5)

The columns of Lkg are the EOFs of SST, SIC and SIH when k = 1, 2, 3415

respectively. These are the spatial patterns of different statistical modes iden-416

tified within these fields, ordered in decreasing importance. The new inputs417

which we will use for the emulators are the principal components, Zkg , with418

k = 1, 2, 3 for SST, SIC and SIH, respectively.419

The removal of the land mask does not affect the prediction over land since420

only the PCs are included in the emulators. These PCs dictate how the EOFs421

are scaled. As long as the behaviour of the PCs of the atmospheric fields can422

be described as functions of SST PCs, the emulator will be able to emulate423

PLASIM’s outputs over land.424

To better capture the effect of ICF and RFC, which are also varied in425

PLASIM, these two parameters are also introduced as emulator inputs. Their426

indirect effects through the GOLDSTEIN ocean is captured through the PCs427

while their direct effects will be captured from these two parameters. This428

means that the emulator inputs are not independent of each other.429

Since the emulator’s inputs become the PCs obtained from the SVD instead430

of the model parameters, the PCs of a new forcing field need to be obtained431

before we can make a prediction of PLASIM’s output to that field. These432

input PCs are computed by projecting the new boundary forcing field onto433

the EOFs obtained from the decomposition of the training ensemble. This is434
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a simple matrix multiplication and can be done relatively efficiently. There is435

a possibility that at least one of the obtained PCs is outside of the individual436

training range. Thus, care should be taken that such instances do not go437

unnoticed.438

Table 3 The variance explained by the first 10 modes of SST, SIC and SIH. The 600-
member GENIE-1 ensemble was used to obtain these values.

SST SIC SIH

1 85.0 59.9 67.1
2 8.9 12.0 22.5
3 3.4 4.2 4.6
4 0.8 3.4 1.8
5 0.5 2.2 0.9
6 0.3 1.8 0.8
7 0.2 1.3 0.5
8 0.1 1.1 0.4
9 0.1 1.0 0.2
10 0.1 0.8 0.2

Total 99.4 87.7 99.0

By retaining only low-order principal components, the dimension of the439

input is reduced significantly. The variances explained by the first ten EOFs440

for these three fields are displayed in Table 3. Evidently, the top EOFs capture441

the majority of the variance across the ensemble for all three variables. One442

might decide to keep the first ten EOFs of each field which results in 30443

emulator inputs. While this is a significant reduction from three surface fields,444

each has a dimension of 16332 (after land points are removed), it is still a large445

number, and further reduction is desirable. A quick inspection shows that the446

first three modes of SST together explain over 97% of the ensemble variance in447

SST (Table 3) while each of the remaining modes explains less than 1%. Thus,448

the fourth to tenth PCs are likely to contain noise which can be truncated.449

Moreover, sea-ice cover and thickness are both well correlated with SST. The450

correlation between the first PC pair of SST-SIC and SST-SIH are found to be451

0.77 and 0.67, respectively. Therefore, it is likely that they contain redundant452

information already provided by SST and can be discarded.453

To verify this, we construct emulators of the EMBM’s 2-D SAT field using454

various combinations of the dimensionally-reduced inputs. First, emulators us-455

ing the top 3, 5 and 7 SST PCs as inputs, in addition to ICF and RFC, are456

built and validated. A comparison of the performance of the three emulators457

shows that the addition of the fourth and fifth PCs does improve the emulator458

performance significantly (total variance explained increased by 6.77%). The459

addition of even higher order PCs, in this case, the sixth and seventh com-460

ponents, do not contribute significantly nor positively to the final emulator.461

The variances explained by these emulators are shown in Figure 1. Both the462

variance explained and the RMSE between the emulated and simulated fields463

are shown in Table 4. While the fourth and fifth modes explain less than 1%464
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Fig. 1 The variance explained by the SAT emulators using various combinations of inputs.
For each emulators, the number of PCs used from each SST, SIC and SIH fields is included
in the legend. All the emulators also include ICF and RFC as inputs and use the same
amount of training points.

of the total variance, it is possible that despite their small contributions to the465

global signal, they are important in explaining regional features or features466

that have a stronger influence to SAT over land.467

Table 4 The variance explained by the first 10 EOFs of SST, SIC and SIH. The 600-member
GENIE-1 ensemble was used to obtain these values.

Input combination RMSE (◦C) Variance explained (%)

3 SST 1.59 90.2
5 SST 0.98 97.0
7 SST 0.98 97.0
3 SST, 1 SIC, 1 SIH 1.13 90.8
5 SST, 1 SIC, 1 SIH 0.96 96.7
5 SST, 1 SIC 0.96 97.1

In a similar process, the addition of SIC and SIH PCs is tested. Three468

different combinations of dimensionally-reduced inputs are used, i) The first469

three PCs of SST and the first PC of SIC and SIH, ii) The first five PCs of470

SST and the first PC of SIC and SIH, iii) The first five PCs of SST and the471
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first PC of SIC. The addition of the sea-ice components has little effect on the472

performance of the emulator. In addition to these PCs, the two parameters473

ICF and RFC are included in all cases.474

Ultimately, we decided to use the first five PCs from SST, which are the475

first 5 columns of Z1
g, and the two PLASIM parameters as the inputs for all476

emulators built in this article. The dimensionality of the emulator input has477

been reduced from three surface fields, each with 16332 grid cells, with two478

extra parameters down to seven inputs.479

4.2 Physical interpretation of the statistical modes480

To check whether the statistical modes of SST obtained from PCA correspond481

to physical processes, we emulate the first three PCs of SST as a function of the482

original 12 model parameters to study the ensemble climate and its relation to483

these parameters. This step also aids the interpretation of the PLASIM climate484

in later sections. Universal kriging is used since it provides the coefficients of485

the linear part of the emulator, allowing us to compare the relative contribution486

of each parameter to the overall linear trend. Figure 2 shows the first 3 SST487

EOFs and their corresponding universal kriging emulator coefficients. These488

coefficients are the estimated gradients of the linear mean function fitted to the489

data. The importance of a parameter does not solely depend on the regression490

coefficients determined here. Each coefficient corresponds to one of the 12491

model parameters.492

a)

b)

Fig. 2 This figure shows a) The spatial structure of the first 3 EOFs of SST and b) The
corresponding emulator coefficients of the universal kriging emulators of these modes. All
600 cheap simulations were used to train these emulators.
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The first mode, which explains 85.0% of the total variance across the en-493

semble, is a radiative forcing mode, dominated by the atmospheric CO2 con-494

centration, RFC. Other parameters with a significant contribution to this EOF495

are those which directly affect the energy balance via either albedo or atmo-496

spheric greenhouse gas concentration, namely OL0, RMX, OL1 and ICF. A497

larger atmospheric CO2 concentration causes the global surface air tempera-498

ture to rise, which in turn, warms the ocean. Large values of OL0 and RMX499

have a similar effect since they also increase the effective greenhouse gas con-500

centration in the atmosphere by allowing more water vapour to remain there.501

The effect of ICF is the opposite sign to RFC since larger values of ICF cor-502

responds to glacier condition closer to the Last Glacial Maximum. Increasing503

values of ICF are associated with larger continental ice cover and higher orog-504

raphy. The orography mask also matches the glacier mask. Thus, increasing505

ICF causes a cooling signature globally through the albedo effect and locally506

due to changes in elevation. The second effect is more apparent when looking507

at SAT (Figure 5 in [56]). The largest variations in this EOF are seen in re-508

gions at high latitudes where sea-ice coverage changes can amplify the surface509

temperature changes. Areas where sea-ice persists show smaller variations.510

The second mode (8.9%) displays a variation in the equator to pole tem-511

perature gradient. A smaller gradient, seen in Figure 2 as a warming at high512

latitudes and cooling in the tropics, is induced mainly by increasing the atmo-513

spheric moisture and heat diffusivity, AMD and AHD. As heat and moisture514

are carried from low to high latitudes more efficiently, the meridional temper-515

ature difference is reduced. The inverse ocean drag coefficient, ODC, governs516

the parameterization of the friction in the ocean and hence, the dissipation of517

momentum. An increase in ODC reduces the friction in momentum balance.518

This parameter also has a significant impact on the strength of the meridional519

ocean circulation in the North Atlantic. WSF is a wind-stress scaling factor,520

controlling the strength of the wind-driven gyres. The strength of this mode521

is controlled by two competing groups of parameters. As the above-mentioned522

parameters with positive coefficients (Fig 1b) increase, the equator to pole523

temperature gradient decreases due to more efficient distributions of heat in524

the system. The second group of parameters with negative coefficients have525

the opposite effect since they affect the net radiation balance. Larger values of526

these parameters tend to cause polar amplification and hence a larger merid-527

ional gradient.528

The third mode (3.4%) shows a bipolar pattern with changes of opposite529

sign in the two hemispheres. A large warming in high Northern latitudes is ac-530

companied by a smaller warming in the tropics and a cooling at high latitudes531

in the Southern Hemisphere. This mode is dominated by ODC and AMD,532

parameters which influence the surface density and freshwater forcing in the533

North Atlantic. Large values of ODC lead to a stronger AMOC and hence534

more heat being transported northwards in the Atlantic. This can result in a535

warmer Arctic, most likely associated with less sea-ice coverage, as seen in the536

spatial pattern of this EOF. Low AMD restricts moisture transport out of low537

latitudes, enhancing the development of the surface salinity at high latitudes,538
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which leads to a stronger AMOC. The ‘bipolar seesaw’ pattern observed in539

North Atlantic vs the Southern Ocean is consistent with the expected role of540

the AMOC in extracting heat from the South Atlantic ocean and delivers it541

northward [52]. Also seen is the weaker ‘Atlantic-Pacific seesaw’, most likely542

to be associated with a positive feedback between the ocean circulation and543

the salinity contrasts on an interbasin scale [49].544

5 Combined principal component analysis of PLASIM outputs545

As mentions in the introduction, PCA was previously used to reduce the di-546

mension of a single high-dimensional variable, the SAT in [56]. The link be-547

tween two sets of PCs describing EMBM and PLASIM SAT was then deter-548

mined using co-kriging. Since this convenient relationship is not guaranteed for549

the variables considered here (i.e., precipitation and wind speeds), we now ex-550

plore the possibility of ‘between variable’ dimension reduction. This idea stems551

from the fact that output variables of different types are not independent, and552

correlations exist between not only within a spatial field or a timeseries but553

also across output types. For example, in an EMBM atmosphere, the SAT554

has a strong effect on both humidity and precipitation. Here, the relationship555

between the low-dimensional representations of different types of variables is556

examined. Figure 3 shows the scatter plots of the first 5 PCs of a) the zonal557

wind, b) the meridional wind, c) specific humidity and d) log-precipitation558

rate against the first 5 PCs of SAT. The logarithm of precipitation rather559

than precipitation was used because this improves the linear correlation be-560

tween the two fields. PC pairs with correlation over 0.5 are annotated in the561

figure. These are not the correlations between pairs of spatial patterns, but562

the correlations across the training ensemble between the PCs of the different563

EOFs. The strong correlations between PCs of similar or the same ranks sug-564

gest that the two fields are indeed strongly correlated. The plot also highlights565

some interesting features in the relationship between fields. For the second PC566

of zonal wind vs. the first PC of SAT(Figure 3a), two nearly parallel branches567

can be seen in the scatter plot. This behaviour suggests that a bifurcation568

exists within our parameter space and the branches represent the two possible569

regimes. There are also indications of non-linear relationships, for example,570

between the first pair of PCs of humidity and SAT.571

Given the strong correlation between same order PCs of these variables and572

SAT, ‘between variables’ dimensional reduction is applied to each pair using573

combined PCA (also known as combined EOF). This method has previously574

been employed to emulate a combination of four output time series from a575

simple climate model by [5]. This is a linear decomposition technique, and576

thus, nonlinear relationships between variables will be lost. However, given577

that the variables are related, by combining PLASIM SAT with an additional578

field such as humidity, we can use the EMBM’s SAT as a fast approximation579

of the combined field in the multi-level emulator. We refer to this as ‘cross-580
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a)

c)

b)

d)

Fig. 3 Correlation between the PCs of SAT and a) zonal wind velocity, b) meridional wind
velocity, c) log-precipitation, d) specific humidity. The PCs shown are obtained using the
600-member ensemble of PLASIM simulations.

variable’ emulation as information is passed across different types of variable581

from different models.582

While there is no limit on how many fields can be decomposed together,583

information on each individual field is lost when each individual field is added584

so for each variable, the SAT is decomposed together with only one other field585

each time. To do this, we simply concatenate PLASIM SAT and each field of586

interest together forming a new state vector587

Vk = [U0
p,U

k
p], (6)

where U0
p is the matrix of PLASIM SAT and Uk

p is the other atmospheric588

variable; k = 1, 2, 3 and 4 for zonal wind, meridional wind, log-precipitation589

and humidity, respectively. SVD is then applied to decompose the 49152 × n590

matrix Vk.591

Since we are putting together two different quantities with different units,592

the standardised state vectors are used to avoid having one field dominate the593

result solely because of its large relative magnitude compared to the other field.594

For example, the range of SAT is about four times larger than that of wind595

speeds, and so it is likely that the resulting pattern from non-standardised596
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combined PCA will attribute a higher importance on the SAT. The columns597

of the standardised state vector are given by598

Ṽkj =
Vkj − µk

σk
, (7)

where µk = 1
n

∑n
j=1 Vkj is the ensemble mean and σk = ( 1

n−1
∑n
j=1(Vkj −599

µk)2)1/2 is the ensemble standard deviation at the kth grid cell. This trans-600

formation makes the data adimensional and treats the two fields equally. It601

is possible to specify an arbitrary scaling constant to put more emphasis on602

one variable if desirable. However, we do not attempt this here. The stan-603

dardisation leaves us with the same result as would be obtained if PCA was604

performed using an eigendecomposition on correlation matrices instead of a605

SVD. Therefore, this is often referred to as combined correlation PCA (or606

combined correlation EOF).607

Table 5 The variance explained by the first 10 modes of zonal wind (UWN), meridional
wind (VWN), precipitation (PTN) and humidity (HUM). The values listed are obtained
using combined PCA of each variable with PLASIM SAT.

UWN VWN PTN HUM

1 29.47 24.86 27.03 88.76
2 20.46 25.91 14.33 5.48
3 11.65 9.49 9.73 2.05
4 6.07 4.77 7.38 0.60
5 4.96 3.85 5.66 0.80
6 3.52 3.23 3.42 0.34
7 2.19 2.92 3.49 0.32
8 1.88 2.49 2.54 0.08
9 1.38 1.49 1.92 0.15
10 1.09 1.11 0.98 0.01

Total 82.66 80.14 79.44 98.68

This procedure is applied to each of the four PLASIM variables. The vari-608

ances explained by the first ten modes of Vk are listed in Table 5. Compared609

to SAT and humidity, the proportion of variance explained by the first ten610

PCs is lower for the wind speed components and precipitation rate.611

6 Emulating multiple atmospheric outputs612

6.1 Co-kriging emulator of combined fields613

We now apply co-kriging to the PCs obtained from combined PCA. While614

PCA and emulation are done on fields containing 12 months, all figures in this615

section display the annual average fields.616

Emulators of the PCs of PLASIM’s variables, Vk, are now constructed. Fig-617

ure 4 shows the data used to construct co-kriging emulators of the PLASIM’s618
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Vk emulator

PC 1 emulator 

...

PC 2 emulator 

PC 10 emulator 

PC 1 of Vk

PC 2 of Vk

PC 10 of Vk

...

PC 1 of Ug

PC 2 of Ug

PC 10 of Ug

...

GENIE-1
cheap

training data

PLASIM
expensive 

training data

The first 
5 PCs of Wgc

Corresponding
ICF and RFC

GENIE-1

The first 
5 PCs of Wge

GENIE-1

Corresponding
ICF and RFC

Fig. 4 The emulator of a PLASIM’s variable, Vi, consists of 10 co-kriging emulators of the
first 10 PCs of Vi. The cheap and expensive training data for each PC emulator are the
corresponding PC obtained from U0 and Vi. These 10 PCs are emulated as functions of the
first 5 PCs of GENIE-1’s SST, ICF and RFC. The matrices of SST corresponding to the
cheap and expensive training data are W and W1, respectively.

combined field Vk. The SST fields obtained from GENIE-1’s training ensem-619

ble are formed into matrix Wgc and Wge of size 16332× nc and 16332× ne,620

respectively. The superscript 1 for SST is dropped since we no longer use sea621

ice fields. These are the emulator inputs corresponding to the cheap GENIE-1,622

Ug, and expensive PLASIM, Vk, training data. The first 5 PCs of Wgc and623

Wge are used together with ICF and RFC as the Vk emulator’s inputs. All624

emulators constructed here use the same inputs.625

The emulator of each field, Vk, is actually a collection of 10 individual PC626

emulators. Each Vk PC emulator uses the corresponding PC pairs of Ug and627

Vk, whose dimensions are 24576×nc and 49152×ne, as training data. Overall,628

40 emulators are constructed to emulate the surface field of PLASIM’s zonal629

wind speed (k = 1), meridional wind speed (k = 2), log-precipitation (k = 3)630

and specific humidity (k = 4).631

In the remainder of this section, we analyse the combined fields.632

6.2 Surface wind velocity633

While each wind speed component is decomposed separately with SAT for the634

construction of their emulators, both zonal and meridional wind components635

are decomposed together with SAT here:636

Vwind = [U0
p,U

1
p,U

2
p]T. (8)
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This allows a direct comparison between the modes of the two components.637

Figure 5 shows the first three modes of SAT, zonal and meridional wind638

components. The wind components are defined to be positive in the eastward639

and northward direction for the zonal and meridional components, respec-640

tively. Therefore, positive values in the zonal wind EOFs mean a reduction if641

the mean flow is westward but an increase if the mean flow is eastward. For642

the meridional EOFs, in the Northern Hemisphere, positive values indicate643

stronger polewards winds while in the Southern Hemisphere, the opposite is644

true.645

Fig. 5 The first three EOFs of SAT, zonal and meridional wind components obtained
from a combined correlation PCA decomposition of Vwind using outputs from the whole
600-member ensemble.

In the first mode of SAT and wind anomalies, changes are associated with646

a monopole pattern in temperature with the largest variations over regions at647

high latitudes (the Arctic and Antarctica) and high elevations (the Tibetan648

Plateau, North America and Antarctica). The surface zonal wind speed is649
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negatively correlated to SAT. In the warming case, weaker trade winds in both650

hemispheres are seen in the zonal and meridional wind components, indicating651

less active Hadley cells. The Westerlies are also slightly weakened and appear652

to shift poleward. There are also significant decreases in wind velocity over653

the Arctic and Antarctica in this EOF. Universal kriging coefficients show654

that this mode is predominantly driven by the second and first EOF of SST,655

which, in turn, are controlled by the parameters discussed in Section 4 and656

Figure 2. Therefore, the observed variations in the wind are due mostly to the657

changes in equator-to-pole temperature gradient and to a lesser extent, due658

to the global changes in SST. As the SAT at the poles warms up more than659

at the equator, the global temperature differential decreases, resulting in the660

observed reduction in wind speed.661

The second mode of winds and air temperature is dominated by the Lau-662

rentide and the Fennoscandian ice sheets. The changes in elevation and albedo663

corresponding to different glacial masks lead to the large variation in SAT in664

these areas, e.g., the strongest wind anomalies are observed in the vicinity of665

the Laurentide in North America. The surface wind fields are modified due666

to both thermal and mechanical forcing. The Southern Hemisphere wester-667

lies are slightly weaker while in the Northern Hemisphere, they are disrupted668

by the continental ice sheets. The third mode displays a strengthening of the669

westerlies associated with a larger equator-to-pole temperature difference. The670

anomalies due to both of these modes are weaker in general compared to the671

first mode. Changes in velocities at low latitudes are relatively small. However,672

significant local changes are seen due to the presence of the ice sheets.673

6.3 Humidity and precipitation674

The behaviour seen in surface specific humidity (Figure 6) is relatively straight-675

forward; humidity increases as surface temperature rises and vice versa. The676

humidity in the tropics appears to be more sensitive to a change in temperature677

as a result of the Clausius-Clapeyron relation. As the temperature decreases,678

the atmosphere can hold less water vapour and hence has a lower humidity.679

This relationship is non-linear and a warm atmosphere can hold a much higher680

moisture content than a cold atmosphere. Thus, a small change in tempera-681

ture in the tropics leads to a larger change in humidity than a similar change682

at high latitudes. This is evident in all three modes. While they have a very683

distinct spatial pattern compared to SAT, their responses to the changes in684

boundary forcing conditions, specified by the PCs are the same.685

The precipitation pattern in the first EOF (Figure 7) is characterised by a686

large-scale drying, resulting from the reduced evaporation associated with the687

global cooling. Largest drying is seen over Antarctica. The desert zones, asso-688

ciated with the downwelling branch of the Hadley cells in both hemispheres689

experience an increase in precipitation. This is likely to be a result of the690

weaker Hadley cell associated with this mode of SAT anomaly. We observed691

stronger zonal and meridional components of the easterlies, which is an indica-692
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EOF 1

EOF 2

EOF 3

Fig. 6 The first three EOFs of SAT and specific humidity obtained from a combined cor-
relation PCA decomposition of Vk with k = 4, using outputs from the whole 600-member
ensemble.

tor of a stronger Hadley cell as SAT increases (Figure 5). A weakened Hadley693

cell would lead to a wetter dry band and less precipitation over the ITCZ.694

In the second mode, we see more rain over the ocean where a positive695

anomaly in SAT induces more evaporation. Over the Africa and Australia696

continents, rainfall is negatively correlated to SAT anomaly. Similarly, in the697

third mode Australia and South Africa appear to become wetter when SAT698

decreases. In this EOF, the zonal wind anomaly appears to bring more mois-699

ture from the ocean into the South African and Australian continents. For700

both humidity and precipitation, regions with large variations are confined to701

the tropics and subtropics.702

The checkerboard-like patterns seen in the precipitation plots are spuri-703

ous numerical oscillations, also known as Gibbs oscillations [17]. They are704

numerical noise associated with the transformation of the truncated spectral705
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EOF 1

EOF 2

EOF 3

Fig. 7 The first three EOFs of SAT and log-precipitation obtained from a combined cor-
relation PCA decomposition of Vk with k = 3, using outputs from the whole 600-member
ensemble.

representation of a field to physical space, often seen in spectral models. The706

presence of such patterns makes it difficult to distinguish physical variations707

from noises.708

The monthly variations of each set of EOFs show the same global signals709

to the annual fields discussed here, except for some seasonal features such as710

stronger signals associating with the winter hemisphere. The seasonal EOFs711

for precipitation, humidity and the zonal wind components are all included in712

the Supplementary section (Figure S1-S4).713

7 Emulator validation714

Once the emulators are constructed, we provide them with the inputs of the715

validating ensemble (the first 5 SST PCs, ICF and RFC) and receive in re-716
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Vi emulator

PC 1 emulator 

...

PC 2 emulator 

PC 10 emulator 

The first 5 PCs 
of validated 

SST field

GENIE-1

Corresponding
ICF and RFC

PLASIM

Simulated Vi

PC 1 of Vi

PC 2 of Vi

PC 10 of Vi

...

PLASIM
emulated PCs

Emulated Vi

Validation ensemble

Co-kriging

Fig. 8 The Vi emulator’s predictors take the PCs of the validating SST, ICF, and RFC
and produce the emulated PCs corresponding to those inputs. The 2-D emulated fields
are reconstructed from the emulated PCs and the EOF patterns and are compared to the
PLASIM’s simulated outputs.

turn, the estimated PCs of precipitation, humidity and wind speed components717

corresponding to these new input values (Figure 8). The 2-D fields are then718

reconstructed from the predicted PCs and compared to the simulated values719

to evaluate how well the emulators do at predicting the ensemble behaviour720

and how well each simulation is reproduced. The emulators are assessed after721

each of the 10 PCs is emulated.722

Two measures are produced to evaluate the emulator performance across723

the training ensemble, the average normalised RMSE and the percentage of724

total variance explained, VT . For each surface field, the normalised RMSE, ε̂725

is calculated as726

ε̂j =
εj

Umaxj − Uminj

× 100, (9)

where εj is the RMSE between the jth emulated and simulated field and Umaxj727

and Uminj are the maximum and minimum values of the same field. This quan-728

tity gives the error as a percentage of the spatial range in the corresponding729

field. The error plotted in Figure 9 is the normalised RMSE averaged over730

all 214 validation simulations. The proportion of the total ensemble variance731

captured by the emulator, VT is732

VT = 1−
nv∑
j=1

m×12∑
k=1

(Sj,k − Ej,k)2
/ nv∑

j=1

m×12∑
k=1

(Sj,k − S̄k)2, (10)
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where Sj,k is the simulated output at grid cell k in the jth member of733

the validating ensemble, Ej,k is the corresponding emulated output and S̄k734

the ensemble mean simulated output at grid cell k. The total number of grid735

cells is m × 12 since the monthly outputs from all 12 months are used in the736

validation. The size of the validating ensemble is nv = 214.737

The normalised RMSE and the variance explained by the first ten modes738

of the simulated fields are also shown (dashed line) in this figure. This is739

the percentage of variance explained that would be achieved by a perfect co-740

kriging emulator, limited only by information loss due to dimensional reduction741

of outputs into EOFs and PCs. The departure from this dashed line by the742

emulator’s variance is a result of the component error. The kriging emulator743

(single level emulator using only PLASIM data) results for the same quantities744

are also included in the plot. These emulators use the same 90 expensive745

training points for each PLASIM’s variable. They also use covariance PCA as746

opposed to combined correlation PCA as for co-kriging.747

Fig. 9 The normalised RMSE and variance explained by the first 10 emulated EOFs for
zonal wind speed, meridional wind speed, specific humidity and precipitation. Co-kriging
(solid) is compared against kriging (dashed). The RMSE and the variance that would be
achieved by a perfect emulator are also included for each plot (dotted line). Each co-kriging
emulator uses 200 cheap and 90 expensive training points while a kriging emulator uses 90
expensive training points.

As more modes are added, emulator performances improve. In all cases, the748

first three modes are emulated most successfully, based on their high values of749
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r2 - the coefficient of determination, and capture over 50% of the total variance750

while adding further modes improves the emulator by small but not negligible751

amounts. Starting from the fourth mode, the performance of kriging emulators752

of zonal wind and precipitation departed significantly from the performance753

limit (dashed line). Co-kriging emulator of higher order modes continue to754

contribute significantly after the first three modes.755

For the wind speed emulators, 73.7% and 69.6% of the total variance for756

zonal and meridional components, respectively, are captured using co-kriging.757

They are approximately 10% lower than the total variance captured by the ten758

simulated modes but are 9.2% (zonal) and 7.6% (meridional) higher than the759

kriging emulator results. The final emulated fields for both components have760

an average normalised RMSE of 2%. For both components, the co-kriging761

emulators perform comparably or slightly under-perform compared to kriging762

in the first two modes. The kriging emulators outperform even the perfect co-763

kriging case here. This is because the first two modes obtained using ordinary764

PCA of wind speed explain more of the total variance than the combined PCA765

do. The fact that the co-kriging emulators ultimately outperform kriging ones766

demonstrate the value of the added information from EMBM’s SAT.767

The precipitation emulator performs less well in capturing the ensemble768

variance, explaining 64.9% of the total variance while the ten simulated modes769

explain 76.5%. Compared to the 41.0% achieved by the kriging emulator, the770

co-kriging step clearly adds more useful information than it takes away. The771

average normalised RMSE for precipitation is 1.6%, higher than those of the772

wind emulators. This RMSE is normalised against the range of the field. When773

RMSE is normalised against the standard deviation instead (RMSD in Fig-774

ure 10), precipitation emulator does not outperform the wind emulators. Pre-775

cipitation tends to exhibit more internal variation than other variables, re-776

sulting in a smaller fraction of the total variance being explained by the top777

EOFs. Among the four variables, precipitation is also least strongly correlated778

to SAT.779

The humidity emulator performs best thanks to its similarity to SAT.780

98.2% out of 98.9% of the ensemble variance is captured. The average nor-781

malised RMSE is 1.5%. Co-kriging, in this case, manages to capture 8.4% of782

the total variance that was not emulated by the kriging emulator. It is not783

surprising that the emulator for humidity performs well considering the high784

correlation between SAT and the specific humidity.785

The expensive emulator’s inputs (SST PCs) are members of the cheap786

input set when co-kriging is used. This means that the PCs corresponding787

to the 90 expensive training points were a subset of the PCs obtained from788

the decomposition of 200 SST fields. When kriging is used, however, only 90789

SST fields are used in trying to capture the whole ensemble behaviour. As a790

result, the EOFs and PCs computed in the co-kriging case are more likely to791

be reliable and robust.792

The result shown in Figure 9 are averaged over the 12 calendar months. A793

breakdown result of the variance explained for each month is included in the794

Supplementary section (Figure S5).795
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Fig. 10 A comparison of the emulated and simulated values of zonal and meridional wind
components, precipitation and specific humidity using Taylor diagrams. The simulated out-
puts are treated as observations and the emulated values are compared against them in pairs.
The blue dots represent emulated values from the co-kriging emulators while the green dots
represent those from the kriging emulators.

Taylor diagrams (Figure 10) are used to compare each emulated field to its796

simulated one. The Taylor diagrams display, at the same time, the correlation797

coefficient, standard deviation and root mean square difference (RMSD) of798

the emulated fields with respect to their corresponding simulated field. Both799

standard deviation and RMSD are normalised by the simulated field’s stan-800

dard deviation. All four emulators can reproduce the surface patterns well, as801

demonstrated by the high average correlation. For all variables, except pre-802

cipitation, the minimum correlation is approximately 95% or higher. For pre-803

cipitation, while the vast majority of the emulated fields are well correlated804

to the simulated ones, there are two outliers with correlation below 85%. The805

standard deviations of the emulated ensembles are centred around 0.99 of806

the original field’s values, indicating that the emulators very slightly under-807

estimate the spatial variation in general. The average RMSD appears to be808

around 15-20% of the original field’s standard deviation, except for humidity,809

where this value is much lower, around 5%. The emulated ensembles tend to810
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cluster together on the diagrams indicating that the performance across the811

ensemble is mostly consistent.812

The two outlying points in the precipitation diagram are associated with813

very large scores of SST PC1, which depends on RFC, OL0, RMX and OL1. A814

quick verification shows that the high RMSDs correspond to very large values815

of both RFC and OL0. While the PC scores for these two points are still816

within the training range, it is important to note that certain combinations817

of parameters of the validation simulations can lead to PC scores beyond the818

training range.819

The kriging results are also shown in (Figure 10) for comparison. The820

collection of kriging points are more scattered with lower correlations, larger821

spread in standard deviations and lower RMSD. The co-kriging emulator of822

precipitation shows the largest improvement in terms of RMSD. The kriging823

emulator of humidity obtains a good correlation but tend to overestimate or824

underestimate the standard deviation of the spatial field.825

Fig. 11 The distribution of fractional error averaged over the 214-member validation en-
semble for wind speed, humidity and precipitation. The total error is shown on the left while
the emulator error is shown on the right.
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The emulators appear to be doing a good job of reproducing PLASIM’s826

simulated fields in general. Now we want to examine the distribution of errors827

to identify weak geographical regions in the emulator. The component errors828

are compared against the original and dimensional reduced fields by evaluating829

the error at each grid cell as a fraction of the values at that cell with830

P̂j =
|Ûj − Uj |

Uj
, (11)

where Ûj is the emulated value at the jth grid cell, and Uj is either the sim-831

ulated or the dimensionally reduced value (the simulated field described by832

the first ten EOFs only) in the same grid cell. By computing this error using833

the dimensionally reduced fields, we only look at the error introduced by the834

emulation process. Using the simulated values gives the total error, a com-835

bination of component error and the truncation error. Figure 14 displays the836

geographical distributions of the total error (left) and component error (right).837

The errors are calculated for surface wind speed (top), humidity (middle) and838

log-precipitation rate (bottom). The surface wind speeds are calculated from839

the emulated zonal and meridional components. The white colour, which indi-840

cates small errors, dominates all three plots showing good agreement between841

the emulated and simulated values. The similarity between the total errors and842

the component errors suggests that component errors dominate, and trunca-843

tion errors are less significant. In general, large fractional errors are associated844

with low values. This is clearest in precipitation, where fractional errors with845

a magnitude over 1 are seen in the Sahel, where very little rain is observed.846

The humidity emulator is valid everywhere. The errors are large over the Lau-847

rentide but they are still under 50%, and this area is expected to have low848

humidity. For wind speed, the area with the largest error is also in a location849

with very low winds to the west of Greenland.850

Figure 12 summarises the emulation result by comparing the simulated851

and emulated mean fields for all four variables. The emulated minus simu-852

lated difference is shown in Figure 13. Since this is the difference in the mean853

fields across the emulated and simulated ensemble, it highlights the systematic854

error that prevails in all simulations. The emulated and simulated fields are855

very similar in all four cases. Areas of large errors are seen for the easterlies856

and Southern Hemisphere westerlies and to the region southeast of Green-857

land. Precipitation over the maritime continent in the Pacific appears to be858

underestimated. The largest differences in humidity are seen in the southern859

hemisphere tropical Pacific. Overall, the magnitude of these differences is small860

compared to the actual values. The errors in kriging emulators are larger but861

have similar patterns since the errors depend on the spatial pattern of the862

truncated modes.863

Figure 14 shows the error in the predicted zonal wind in terms of the864

emulator’s estimated standard deviation. For each validation point from the865

214-member ensemble, the error at each emulated grid point is normalised866

by the estimated standard deviation at that point. The errors plotted are867



Cross-variable emulation 31

Zonal wind (ms-1)

Meridional wind (ms-1)

Speci�c humidity (g kg-1)

Precipitation (mm day-1)

Fig. 12 Comparison between the simulated and emulated ensemble mean of the zonal wind
speed, meridional wind speed, humidity and precipitation.

the difference between the emulated value at each grid point and the trun-868

cated simulated value (retain the first 10 EOFs only) at the same point. The869

truncated fields are used to exclude the errors introduced by the dimension870

reduction. The fraction of grid points that fall within 1, 2, 3, 4 and over 5871

standard deviation ranges are shown in the figure. A well-calibrated emulator872

should have 66-95-99% of the error falls within the 1-2-3 standard deviation873

range. In our case, while the validation against simulated values showed that874

the predictions are close, the emulator appears to be overconfident and so the875
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Fig. 13 The difference between the emulated and simulated fields for a) kriging and b)
co-kriging emulators.

predicted standard deviation is too small. As a result, less than 55% of the876

grid points are fall within the 1 standard deviation of the emulated mean.877

There are several potential causes of this behaviour. It could be due to the878

assumption made on the mean and covariance structure (see the Appendix).879

Since we did not impose a specific mean function on the co-kriging emula-880
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Fig. 14 Evaluation of the emulation error in terms of estimated emulator standard deviation
for the zonal wind emulator. Each of the 214 validation points is plotted, showing the fraction
of grid points that fall within the 1, 2, 3 and so on standard deviations from the mean. The
black horizontal lines indicate the 66th, 95th and 99th inner quantiles of the distribution

tor, the problem could be due to the squared exponential correlation function881

used. This leads to a smooth covariance structure that can underestimate the882

credible intervals between training points. A coarser correlation such as the883

Matern can be used instead. It can also be due to an inappropriate value of the884

estimated hyperparameters. For example, an underestimation of the variance885

σ2 (Eq. A.4 in the Appendix) can also lead to narrow credible intervals. The886

use of co-kriging might also contribute to this. As information is gained from887

EMBM, the emulator becomes too confident in regions where cheap training888

points are available. Further diagnostics are required to identify the root of889

the problem and to improve the emulator’s estimated uncertainty. [3] provides890

a summary of several diagnostics that can be applied.891
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8 Summary and conclusions892

We have successfully combined several statistical techniques to construct em-893

ulators relating PLASIM’s high-dimensional atmospheric variables to the 2-D894

boundary forcing fields provided by GENIE-1’s ocean component. Here, we895

have demonstrated that spatial and temporal correlations exist between two896

levels of model fidelity and between different variables. Then by employing897

combined PCA together with co-kriging, PLASIM’s surface winds, precipi-898

tation and specific humidity can be emulated. Even though the EMBM at-899

mosphere of GENIE-1 cannot simulate a realistic precipitation pattern and900

does not provide information on the surface wind fields, information on the901

atmosphere’s response to changes in SST is extracted and used to improve the902

accuracy of the emulators. The emulators constructed are validated and shown903

to be capable of reproducing all four variables, most successfully for humidity904

and less so for precipitation. Areas, where systematic errors occur as a result905

of the linear decomposition and the fact that emulators tend to underestimate906

ensemble variability, are identified.907

Furthermore, based on the work done by [24], PCA was also used to take908

into account the seasonal cycle by treating the monthly surface fields as a909

single field. The emulator constructed using this method has a knowledge of910

how the atmosphere behaves within an average model year as a function of the911

SST boundary forcing. Another important feature introduced in this study is912

the dimensional reduction of 2-D input fields following from the work of [25].913

In this case, the original input consists of several fields (SST, SIC and SIH)914

which evolve in time (12 months). An ad hoc screening procedure was then915

carried out to reduce the number of inputs from three surface fields containing916

48996 grid cells to the final number of seven inputs. While traditional model917

parameters are treated as independent, high dimensional spatial input fields918

have structures which, if reduced effectively, can be represented by a much919

smaller number of variables than the dimension of the fields. Since the com-920

putational cost of constructing an emulator depends on the number of inputs,921

due to an increased number of emulator parameters to be optimised, having922

a manageable number of inputs is desirable. The reduction step can be seen923

as a screening step, in which redundant information from ‘inactive’ inputs is924

removed. This technique has the advantage that while the number of model925

parameters or spatial resolution increases, it is likely that the number of PCs926

required would remain relatively low. A ‘nugget’ can be introduced to the927

emulators to account for the variability associated with these inactive inputs928

[5].929

The successful emulation relies on the fact that while having distinctive930

spatial patterns, the first-order response in both models to boundary forcing931

conditions, described by their PCs, are well correlated and can be linked via932

the single multiplier formulation of co-kriging. While this connection works933

particularly well for the first few EOFs, the emulators of high-order PCs per-934

form less well. This might be because the higher order processes in the two935

models are less correlated. Since the decomposition determines purely statis-936
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tical modes, they often do not correspond to actual physical processes in the937

models. It is possible that if the dimensionally-reduced modes of variation rep-938

resent meaningful behaviours of the system, the correlation between the PCs939

from the two models can be improved. A possibility which deserves consid-940

eration in this case is the rotation of principal components. In cases where941

the PCs are used purely for the purpose of dimension reduction, unrotated942

EOFs/PCs are good solutions. However, we are interested in understanding943

the model behaviour as well as identify meaningful relationships between two944

levels of model complexity through EOFs/PCs and rotated EOF offers the945

ability to isolate specific modes of variation. The idea is to transform the EOF946

to another system of coordinates by applying a rotation matrix which fulfils947

a specific criterion. There are various rotation criteria in literature as well as948

methodologies to analyse the data to identify the optimal choice of a solution.949

Examples of both can be found in [46]. Other possibilities, including the use950

of factor analysis, unrotated or rotated [43] instead of PCA or the use Canon-951

ical Correlation Analysis (CCA) to relate, for example, the wind components952

or precipitation rate of PLASIM to SAT of PLASIM or directly to SST of953

GOLDSTEIN. CCA defines coordinate systems such that the correlation be-954

tween the projections of two different datasets onto these coordinate systems955

is mutually maximised [1, 19].956

The treatment of temporal variation can also benefit from further work.957

In this work, we followed the approach of [24], which uses PCA to reduce the958

dimensionality of spatio-temporal data. This method treats the temporal be-959

haviour of each quantity the same way as spatial variations. There exist several960

alternative approaches to emulate a timeseries output such as those discussed961

in [9]. The first and also the simplest method is the ‘many single-output’ emu-962

lators which emulate the outputs in time separately. In this situation, we would963

need to build 12 separate emulators, one for each month. Another possibility964

is the ‘time input’ emulator which treats time as another parameter and each965

month can be considered as a training point. This approach would lead to 12966

times as many training points, which increases the computational expense re-967

quired to build an emulator significantly. Finally, [9] proposed a ‘multi-output’968

emulator which generalised the univariate GP emulator work with a multivari-969

ate output. Each of these methods has some advantages over the others. [24]970

pointed out that the use of spatio-temporal data allows for the possibility of971

abrupt transitions because spatial fields are not forced to be similar through972

time. The ‘time input’ method is more restrictive because it would impose a973

form in time. The ‘many single-output’ approach, on the other hand, fits sepa-974

rate emulators to each month and hence no fixed structure in time is assumed.975

This flexibility can be advantageous, depending on the application. This is976

less of an advantage in our case since we are not dealing with a long time977

series but with a seasonal cycle and spatial fields are expected to behave in a978

known fashion. A ‘time input’ emulator is a more rigid and computationally979

intensive special case of the ‘multi-output’ emulator. These methods, among980

other multivariate techniques, often deal with either high-dimensional spatial981

outputs or scalar outputs that evolve in time. Future research on techniques982
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which incorporate both of these factors seems worth investigating, considering983

its applicability in works involving time-varying high-dimensional boundary984

conditions.985

In conclusion, as a result of the dimensionality reduction, GENIE-1’s oceanic986

fields can be used as inputs enabling the possibility to emulate PLASIM’s at-987

mospheric variables as a function of SST directly. This way, fluxes between988

the atmosphere and the ocean can be emulated, allowing the exchange be-989

tween the ocean and the statistical emulators. The coupling between a climate990

model with a statistical emulator of a complex subcomponent can be achieved991

efficiently using this approach. In our case, the emulated fields can be passed992

back to GENIE-1, driving its ocean and sea-ice components. Indeed, an inter-993

active coupling between GENIE-1’s components with statistical emulators of994

PLASIM’s atmospheric quantities is currently under construction and will be995

the focus of future studies.996

This coupling method can also be applied to models which use climatolog-997

ical records or products from reanalyses as boundary/forcing conditions. This998

hypothetical model setup shares some similar aspects to the regional hybrid999

coupled model presented in [2] where a link between the SST from an OGCM1000

to the wind stress field is determined based on the relationship obtained from1001

observational SST and wind stress data. The two observational datasets are1002

decomposed into separate EOFs whose PCs can be linked through a regres-1003

sion, which is then used to provide a prediction of the wind stress response to1004

a new SST field. There exist other regional and global hybrid models which1005

employ different approaches to learning the statistical link between observa-1006

tion fields such as the use of canonical correlation analysis in [1], singular value1007

decomposition of observational data to supply wind stress anomaly seen in [53]1008

and the representation of feedbacks due to the ocean-atmosphere interaction1009

derived from a local deviation of SST through the use of linear regressions by1010

[8].1011

Compared to directly replacing EMBM with PLASIM, this hybrid coupling1012

strategy has the potential to produce a coupled model that is two orders of1013

magnitude faster and therefore makes a substantial improvement in the range1014

of timescale accessible to the class of coupled model. Here, we assume that the1015

near-surface atmospheric variables are determined by SST, and the atmosphere1016

responds instantaneously to changes in the boundary condition described by1017

the ocean. Compared to the ocean, the atmospheric response time to climate1018

forcing is relatively short due to its lower heat capacity. Thus, on the long1019

timescales considered in palaeoclimate research, the assumption made about1020

the equilibrium response of the atmosphere is acceptable. It is, however, not1021

valid for applications, in which the atmosphere and ocean vary together on1022

interannual timescales (e.g., the ENSO).1023
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A Gaussian process emulator1024

The climate model, f(·), can be viewed as a function of a set of inputs,1025

x = [x1, · · · , xd], where d is the number of perturbed model parameters. This1026

number is commonly referred to as the number of dimensions of the emulator.1027

The output of each model run is a scalar value y. Supposed we have n simu-1028

lation runs, providing n realisations y = [y1 = f(x1), · · · , yn = f(xn)]. These1029

comprise the training set used to train an emulator.1030

First, the function f(·) is represented by a GP prior described by a mean1031

function m(·) and a covariance function V (·, ·)1032

f(·)|β, σ2,θ ∼ N (m(·), V (·, ·)). (A.1)

This GP is used as a prior for Bayesian inference. The prior does not1033

depend on the training data but specifies the assumptions made about the1034

function of interest. Then, the outputs from a selected number of simulations1035

are incorporated, allowing us to update the prior to the posterior GP. This1036

process is called training the GP model. Following [28], m(·) and V (·, ·) are1037

modelled hierarchically, meaning that they are parameterised in terms of hy-1038

perparameters. The mean function is given by:1039

m(x) = hT (x)β, (A.2)

where h(x) is a vector of known regression functions of the inputs, describing1040

a class of shapes of the function f(·). β is an unknown vector of coefficients. In1041

the case of ordinary kriging, h(·) = 1, making β the unknown overall mean.1042

A variation of kriging, called universal kriging, uses a linear mean function:1043

h(·) = (1,xT ), (A.3)

where h(x)T is a (s× 1) vector with s = d+ 1.1044

The covariance function is given by:1045

V (x,x′) = σ2Ψ(x,x′), (A.4)

in which σ2 is an unknown variance of the GP and Ψ(·, ·) is the assumed1046

correlation function:1047

Ψ(x,x′) = exp

− d∑
j=1

10θj
∣∣xj − x′j∣∣pj

 . (A.5)

The function Ψ represents the correlation between pairs of points, which is1048

assumed to be stationary and continuous, that is, it only depends on the1049

distance between the pair of inputs, (x−x′). This power exponential form of1050

covariance structure is a popular choice due to its flexibility.1051

Both p and θ can be estimated for each dimension. For simplicity and to1052

reduce computational cost, p = 2 is assumed for all dimensions. An indepen-1053

dent value of θ is obtained for each dimension by maximising the likelihood of1054

y.1055
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The specified GP is used as a prior for Bayesian inference and is parame-1056

terised in terms of the hyperparameters β, σ2, θ and p. Given that the prior1057

is Gaussian, by analytically marginalising β and σ2, the marginal likelihood1058

of the observed outputs at n training points, y, given θ and p can then be1059

computed (estimated by maximising the likelihood of y). A more detailed1060

description of the derivations and formulations can be found in [37].1061

Prior beliefs about the model behaviour are combined with observations1062

from training points to produce a posterior distribution for the model. Having1063

obtained estimates for θ and p, the posterior distribution found can be used1064

to make predictions about the model’s outputs at unsampled inputs. The pre-1065

dictive distribution is a Student’s t-distribution, with n−s degrees of freedom1066

p(f(x)|y, θ) ∼ tn−s(m1(x), V1(x,x′)), (A.6)

with1067

m1(x) = hT (x)β̂ + T (x)A−1(y −Hβ̂) (A.7)

and1068

V1(x,x′) = σ̂2[Ψ(x,x′)− T (x)TA−1T (x′) + P(x)(HTA−1H)−1P(x′)T ],
(A.8)

where H is the regression matrix of the design points, H = h(x)T , and A1069

is the design points correlation matrix, A = Ψ(x,x′); t(x) is the correlation1070

vector between x and the training set, i.e. (T (x))i = Ψ(x,xi) and P(x) =1071

h(x)T − T (x)A−1H. The estimated values of σ2 and β are indicated as σ̂2
1072

and β̂, respectively:1073

β̂ = (HTA−1H)−1HTA−1y (A.9)

and1074

σ̂2 =
yT (A−1 −A−1H(HTA−1H)−1HTA−1)y

n− q − 2
. (A.10)

A full description of the derivation of the posterior distribution is available1075

in [45].1076

Co-kriging is an extension to this technique, which is applicable when a1077

fast approximation of the primary simulator is available. For this method to1078

work, the primary simulator and its approximation need to be correlated and1079

contain information about one another.1080

When only a small number of expensive runs are available, it has been1081

shown that by combining these with cheaper runs from a simplified code, an1082

emulator of the expensive model can be built at a lower cost [14].1083

We make a simplification that the expensive and cheap models, fe and fc1084

respectively, can be represented by GP emulators with the same value of p.1085

The cheap model is first emulated and then linked to the expensive one using1086

the single multiplier approach:1087

fe(x) = ρfc(x) + fd(x). (A.11)

The right-hand side of the equation consists of a cheap GP, fc, multiplied1088

by a scaling factor ρ and a separate GP, fd, modelling the stochastic residual of1089
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the expensive model [27, 14]. Together these two terms describe the emulator1090

of the expensive model. This approximation is chosen for its simplicity as well1091

as the assumption that the main difference between the two models is largely a1092

matter of scale. This assumption is made based on the fact that both EMBM1093

and PLASIM are driven by the boundary conditions specified by GENIE-1’s1094

ocean. They essentially share similar inputs but have the ability to respond1095

differently.1096

Two sets of training points are required for the construction of a co-kriging1097

emulator; a cheap set yc = fc(xc), which finely samples the input space, and1098

a small, sparse set ye = fe(xe) of expensive points. When the number of1099

PLASIM training points is small, such that a kriging emulator cannot be built1100

with high accuracy, co-kriging employing a large additional number of training1101

points from GENIE-1’s EMBM can be used instead. The number of points1102

required depends on the size of the problem as well as the smoothness of the1103

function being emulated. A general rule of thumb for the number of training1104

points for kriging is 10 times the number of parameters [33]. The inputs at1105

which the expensive training set is obtained, xe, is a subset of the cheap set,1106

xc. These expensive points are chosen using an exchange algorithm described1107

by [10].1108

The covariance matrix for co-kriging, Ψck, can be written in block form as1109

Ψck =

(
σ2
cAc(xc) ρσ2

cAc(xc,xe)
ρσ2

cAc(xe,xc) ρσ
2
cAc(xe) + σ2

eAd(xe)

)
, (A.12)

with Ac = Ψ(x,x′;θc) and Ad = Ψ(x,x′; θd). This covariance matrix1110

encompasses the correlation between cheap points (Ac(xc)), expensive points1111

(Ac(xe) and Ad(xe)) and the cross-correlation between the cheap and ex-1112

pensive points (Ac(xc,xe) and Ac(xe,xc)). Details on the formulation and1113

derivation of this equation can be found in [27] and [14].1114
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