1,345 research outputs found

    Fermion confinement via Quantum Walks in 2D+1 and 3D+1 spacetime

    Full text link
    We analyze the properties of a two and three dimensional quantum walk that are inspired by the idea of a brane-world model put forward by Rubakov and Shaposhnikov [1]. In that model, particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics a domain wall solution. As in the original model, fermions (in our case, the walker), become localized in one of the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization), but from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the "ordinary" dimension.Comment: 5 pages, 6 figure

    Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks

    Full text link
    (Abridged) Many classes of active galactic nuclei (AGN) have been defined entirely throughout optical wavelengths while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepancies that have not been fully understood yet. The aim of this paper is to study the "synapses" between the X-ray and optical classifications. For the first time, the new EFLUXER task allowed us to analyse broad band X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB), transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2). The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components. We suggest that this is related to a large degree of obscuration at X-rays. The S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes have similar average X-ray spectra within each class, but these average spectra can be distinguished from class to class. The S2 (L1.8) class is linked to the S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2, T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class albeit with larger fractions of SB-like component. This SB-like component is the contribution of the star-formation in the host galaxy, which is large when the AGN is weak. An AGN-like component seems to be present in the vast majority of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like component. This trained ANN could be used to infer optical properties from X-ray spectra in surveys like eRosita.Comment: 15 pages, 7 figures, accepted for publication in A&A. Appendix B only in the full version of the paper here: https://dl.dropboxusercontent.com/u/3484086/AGNSynapsis_OGM_online.pd

    The X-ray nature of the LINER nuclear sources

    Get PDF
    The analysis of the X-ray data for a sample of 51 LINER nuclei with available X-ray Chandra imaging is reported. Our aim was to investigate the physical mechanisms which power LINER nuclear activity. The use of multiwavelenght information at radio, UV, optical HST and X-ray lead us to conclude that at least 60% of the LINERs are hosting a low luminosity AGN in their nuclei. This percentage may be even higher if the Compton-thickness of some nuclei (mostly with SB-like hard X-ray morphology) is confirmed.Comment: Conference proceedings to appear in "The Central Engine of Active Galactic Nuclei", ed. L.C. Ho and J.-M. Wang (San Francisco: ASP

    Molecular line emission in NGC1068 imaged with ALMA: II. The chemistry of the dense molecular gas

    Get PDF
    We present a detailed analysis of ALMA Bands 7 and 9 data of CO, HCO+, HCN and CS, augmented with Plateau de Bure Interferometer (PdBI) data of the ~ 200 pc circumnuclear disk (CND) and the ~ 1.3 kpc starburst ring (SB ring) of NGC~1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy. We aim at determining the physical characteristics of the dense gas present in the CND and whether the different line intensity ratios we find within the CND as well as between the CND and the SB ring are due to excitation effects (gas density and temperature differences) or to a different chemistry. We estimate the column densities of each species in Local Thermodynamic Equilibrium (LTE). We then compute large one-dimensional non-LTE radiative transfer grids (using RADEX) by using first only the CO transitions, and then all the available molecules in order to constrain the densities, temperatures and column densities within the CND. We finally present a preliminary set of chemical models to determine the origin of the gas. We find that in general the gas in the CND is very dense (> 10^5 cm^-3) and hot (T> 150K), with differences especially in the temperature across the CND. The AGN position has the lowest CO/HCO+, CO/HCN and CO/CS column density ratios. RADEX analyses seem to indicate that there is chemical differentiation across the CND. We also find differences between the chemistry of the SB ring and some regions of the CND; the SB ring is also much colder and less dense than the CND. Chemical modelling does not succeed in reproducing all the molecular ratios with one model per region, suggesting the presence of multi-gas phase components. The LTE, RADEX and chemical analyses all indicate that more than one gas-phase component is necessary to uniquely fit all the available molecular ratios within the CND.Comment: Accepted by A&A; please contact the author for a better version of the pdf where the resolution and positions of figures are as they will appear in the Journa

    ALMA resolves the torus of NGC 1068: continuum and molecular line emission

    Get PDF
    We have used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6-5) molecular line and the 432 {\mu}m continuum emission from the 300 pc-sized circumnuclear disk (CND) of the nearby Seyfert 2 galaxy NGC 1068 with a spatial resolution of ~4 pc. These observations spatially resolve the CND and, for the first time, image the dust emission, the molecular gas distribution, and the kinematics from a 7-10 pc-diameter disk that represents the submillimeter counterpart of the putative torus of NGC 1068. We fitted the nuclear spectral energy distribution of the torus using ALMA and near and mid-infrared (NIR/MIR) data with CLUMPY models. The mass and radius of the best-fit solution for the torus are both consistent with the values derived from the ALMA data alone: Mgas_torus=(1+-0.3)x10^5 Msun and Rtorus=3.5+-0.5 pc. The dynamics of the molecular gas in the torus show non-circular motions and enhanced turbulence superposed on the rotating pattern of the disk. The kinematic major axis of the CO torus is tilted relative to its morphological major axis. By contrast with the nearly edge-on orientation of the H2O megamaser disk, we have found evidence suggesting that the molecular torus is less inclined (i=34deg-66deg) at larger radii. The lopsided morphology and complex kinematics of the torus could be the signature of the Papaloizou-Pringle instability, long predicted to likely drive the dynamical evolution of active galactic nuclei (AGN) tori.Comment: Final version accepted by the Astrophysical Journal Letters (ApJLetters) on April 27th 2016, 6 pages, 5 figure

    How did Ebola information spread on twitter : broadcasting or viral spreading?

    Get PDF
    BACKGROUND: Information and emotions towards public health issues could spread widely through online social networks. Although aggregate metrics on the volume of information diffusion are available, we know little about how information spreads on online social networks. Health information could be transmitted from one to many (i.e. broadcasting) or from a chain of individual to individual (i.e. viral spreading). The aim of this study is to examine the spreading pattern of Ebola information on Twitter and identify influential users regarding Ebola messages. METHODS: Our data was purchased from GNIP. We obtained all Ebola-related tweets posted globally from March 23, 2014 to May 31, 2015. We reconstructed Ebola-related retweeting paths based on Twitter content and the follower-followee relationships. Social network analysis was performed to investigate retweeting patterns. In addition to describing the diffusion structures, we classify users in the network into four categories (i.e., influential user, hidden influential user, disseminator, common user) based on following and retweeting patterns. RESULTS: On average, 91% of the retweets were directly retweeted from the initial message. Moreover, 47.5% of the retweeting paths of the original tweets had a depth of 1 (i.e., from the seed user to its immediate followers). These observations suggested that the broadcasting was more pervasive than viral spreading. We found that influential users and hidden influential users triggered more retweets than disseminators and common users. Disseminators and common users relied more on the viral model for spreading information beyond their immediate followers via influential and hidden influential users. CONCLUSIONS: Broadcasting was the dominant mechanism of information diffusion of a major health event on Twitter. It suggests that public health communicators can work beneficially with influential and hidden influential users to get the message across, because influential and hidden influential users can reach more people that are not following the public health Twitter accounts. Although both influential users and hidden influential users can trigger many retweets, recognizing and using the hidden influential users as the source of information could potentially be a cost-effective communication strategy for public health promotion. However, challenges remain due to uncertain credibility of these hidden influential users

    An X-ray view of 82 LINERs with Chandra and XMM-Newton data

    Get PDF
    We present the results of an homogeneous X-ray analysis for 82 nearby LINERs selected from the catalogue of Carrillo et al. (1999). All sources have available Chandra (68 sources) and/or XMM-Newton (55 sources) observations. This is the largest sample of LINERs with X-ray spectral data (60 out of the 82 objects) and significantly improves our previous analysis based on Chandra data for 51 LINERs (Gonzalez-Martin et al. 2006). It increases both the sample size and adds XMM-Newton data. New models permit the inclusion of double absorbers in the spectral fits. Nuclear X-ray morphology is inferred from the compactness of detected nuclear sources in the hard band (4.5-8.0 keV). Sixty per cent of the sample shows a compact nuclear source and are classified as AGN candidates. The spectral analysis indicates that best fits involve a composite model: absorbed primary continuum and (2) soft spectrum below 2 keV described by an absorbed scatterer and/or a thermal component. The resulting median spectra parameters and their standard deviations are: G=2.11, =0.54 keV, =21.32 and =21.93. We complement our X-ray results with our analysis of HST optical images and literature data on emission lines, radio compactness and stellar population. Adding all these multiwavelength data, we conclude that evidence do exist supporting the AGN nature of their nuclear engine for 80% of the sample (66 out of 82 objects).Comment: Accepted for publications in Astronomy and Astrophysics, 49 pages, 12 figures. Catalogs only at: http://www.star.le.ac.uk/~gmo4/O.Gonzalez-Martin-LINERs_xray.pd

    PINGS: the PPAK IFS Nearby Galaxies Survey

    Full text link
    We present the PPAK Integral Field Spectroscopy (IFS) Nearby Galaxies Survey: PINGS, a 2-dimensional spectroscopic mosaicking of 17 nearby disk galaxies in the optical wavelength range. This project represents the first attempt to obtain continuous coverage spectra of the whole surface of a galaxy in the nearby universe. The final data set comprises more than 50000 individual spectra, covering in total an observed area of nearly 80 arcmin^2. In this paper we describe the main astrophysical issues to be addressed by the PINGS project, we present the galaxy sample and explain the observing strategy, the data reduction process and all uncertainties involved. Additionally, we give some scientific highlights extracted from the first analysis of the PINGS sample.Comment: Accepted for publication in MNRAS, 26 pages, 14 figures (some in low resolution), 3 table

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201
    corecore