182 research outputs found

    DESI Commissioning Instrument Metrology

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We will describe the methods and results for the commissioning instrument metrology program. The primary goals of this program are to calculate the transformations and further develop the systems that will place fibers within 5um RMS of the target positions. We will use the commissioning instrument metrology program to measure the absolute three axis Cartesian coordinates of the five CCDs and 22 illuminated fiducials on the commissioning instrument

    RETROCAM: A Versatile Optical Imager for Synoptic Studies

    Full text link
    We present RETROCAM, an auxiliary CCD camera that can be rapidly inserted into the optical beam of the MDM 2.4m telescope. The speed and ease of reconfiguring the telescope to use the imager and a straightforward user interface permit the camera to be used during the course of other observing programs. This in turn encourages RETROCAM's use for a variety of monitoring projects.Comment: 6 pages, 6 figures, Accepted by A

    Fresh air in the 21st century?

    Get PDF
    Ozone is an air quality problem today for much of the world's population. Regions can exceed the ozone air quality standards (AQS) through a combination of local emissions, meteorology favoring pollution episodes, and the clean-air baseline levels of ozone upon which pollution builds. The IPCC 2001 assessment studied a range of global emission scenarios and found that all but one projects increases in global tropospheric ozone during the 21st century. By 2030, near-surface increases over much of the northern hemisphere are estimated to be about 5 ppb (+2 to +7 ppb over the range of scenarios). By 2100 the two more extreme scenarios project baseline ozone increases of >20 ppb, while the other four scenarios give changes of -4 to +10 ppb. Even modest increases in the background abundance of tropospheric ozone might defeat current AQS strategies. The larger increases, however, would gravely threaten both urban and rural air quality over most of the northern hemisphere

    Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species

    Get PDF
    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrative resource for genome-scale data from non-vertebrate species. The project exploits and extends technology (for genome annotation, analysis and dissemination) developed in the context of the (vertebrate-focused) Ensembl project and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. Since its launch in 2009, Ensembl Genomes has undergone rapid expansion, with the goal of providing coverage of all major experimental organisms, and additionally including taxonomic reference points to provide the evolutionary context in which genes can be understood. Against the backdrop of a continuing increase in genome sequencing activities in all parts of the tree of life, we seek to work, wherever possible, with the communities actively generating and using data, and are participants in a growing range of collaborations involved in the annotation and analysis of genomes

    Air pollution trends in the EMEP region between 1990 and 2012

    Get PDF
    The present report synthesises the main features of the evolution over the 1990-2012 time period of the concentration and deposition of air pollutants relevant in the context of the Convention on Long-range Transboundary Air Pollution: (i) ozone, (ii) sulfur and nitrogen compounds and particulate matter, (iii) heavy metals and persistent organic pollutants. It is based on observations gathered in State Parties to the Convention within the EMEP monitoring network of regional background stations, as well as relevant modelling initiatives. Joint Report of: EMEP Task Force on Measurements and Modelling (TFMM), Chemical Co-ordinating Centre (CCC), Meteorological Synthesizing Centre-East (MSC-E), Meteorological Synthesizing Centre-West (MSC-W)

    Search for New Particles Decaying to b bbar in p pbar Collisions at sqrt{s}=1.8 TeV

    Full text link
    We have used 87 pb^-1 of data collected with the Collider Detector at Fermilab to search for new particles decaying to b bbar. We present model-independent upper limits on the cross section for narrow resonances which excludes the color-octet technirho in the mass interval 350 < M < 440 GeV/c^2. In addition, we exclude topgluons, predicted in models of topcolor-assisted technicolor, of width Gamma = 0.3 M in the mass range 280 < M < 670 GeV/c^2, of width Gamma = 0.5 M in the mass range 340 < M < 640 GeV/c^2, and of width Gamma = 0.7 M in the mass range 375 < M < 560 GeV/c^2.Comment: 17 pages in a LaTex generated postscript file, with one table and four figures. Resubmitted to Physical Review Letters. Minor clarifications were added to the text. The displayed normalization of the resonance models in Figure 2 was modified to correspond to our 95% CL upper limit on the cross section (instead of arbitrary normalization which was used previously). All results are identical to those in the previous submissio

    Chemical kinetics in an atmospheric pressure helium plasma containing humidity

    Get PDF
    Atmospheric pressure plasmas are sources of biologically active oxygen and nitrogen species, which makes them potentially suitable for the use as biomedical devices. Here, experiments and simulations are combined to investigate the formation of the key reactive oxygen species, atomic oxygen (O) and hydroxyl radicals (OH), in a radio-frequency driven atmospheric pressure plasma jet operated in humidified helium. Vacuum ultra-violet high-resolution Fourier-transform absorption spectroscopy and ultra-violet broad-band absorption spectroscopy are used to measure absolute densities of O and OH. These densities increase with increasing H 2 O content in the feed gas, and approach saturation values at higher admixtures on the order of 3 × 10 14 cm −3 for OH and 3 × 10 13 cm −3 for O. Experimental results are used to benchmark densities obtained from zero-dimensional plasma chemical kinetics simulations, which reveal the dominant formation pathways. At low humidity content, O is formed from OH + by proton transfer to H 2 O, which also initiates the formation of large cluster ions. At higher humidity content, O is created by reactions between OH radicals, and lost by recombination with OH. OH is produced mainly from H 2 O + by proton transfer to H 2 O and by electron impact dissociation of H 2 O. It is lost by reactions with other OH molecules to form either H 2 O + O or H 2 O 2 . Formation pathways change as a function of humidity content and position in the plasma channel. The understanding of the chemical kinetics of O and OH gained in this work will help in the development of plasma tailoring strategies to optimise their densities in applications
    • 

    corecore