86 research outputs found

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    rBCG Induces Strong Antigen-Specific T Cell Responses in Rhesus Macaques in a Prime-Boost Setting with an Adenovirus 35 Tuberculosis Vaccine Vector

    Get PDF
    BACKGROUND: BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB). We tested BCG (SSI1331) (in 6 animals, delivered intradermally) and a recombinant (rBCG) AFRO-1 expressing perfringolysin (in 6 animals) followed by two boosts (delivered intramuscullary) with non-replicating adenovirus 35 (rAd35) expressing a fusion protein composed of Ag85A, Ag85B and TB10.4, for the capacity to induce antigen-specific cellular immune responses in rhesus macaques (Macaca mulatta). Control animals received diluent (3 animals). METHODS AND FINDINGS: Cellular immune responses were analyzed longitudinally (12 blood draws for each animal) using intracellular cytokine staining (TNF-alpha, IL-2 and IFN-gamma), T cell proliferation was measured in CD4(+), CD8alpha/beta(+), and CD8alpha/alpha(+) T cell subsets and IFN-gamma production was tested in 7 day PBMC cultures (whole blood cell assay, WBA) using Ag85A, Ag85B, TB10.4 recombinant proteins, PPD or BCG as stimuli. Animals primed with AFRO-1 showed i) increased Ag85B-specific IFN-gamma production in the WBA assay (median >400 pg/ml for 6 animals) one week after the first boost with adenoviral-delivered TB-antigens as compared to animals primed with BCG (<200 pg/ml), ii) stronger T cell proliferation in the CD8alpha/alpha(+) T cell subset (proliferative index 17%) as compared to BCG-primed animals (proliferative index 5% in CD8alpha/alpha(+) T cells). Polyfunctional T cells, defined by IFN-gamma, TNF-alpha and IL-2 production were detected in 2/6 animals primed with AFRO-1 directed against Ag85A/b and TB10.4; 4/6 animals primed with BCG showed a Ag85A/b responses, yet only a single animal exhibited Ag85A/b and TB10.4 reactivity. CONCLUSION: AFRO-1 induces qualitatively and quantitatively different cellular immune responses as compared with BCG in rhesus macaques. Increased IFN-gamma-responses and antigen-specific T cell proliferation in the CD8alpha/alpha+ T cell subset represents a valuable marker for vaccine-take in BCG-based TB vaccine trials

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p&lt;5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p&lt;5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    No Evidence for Genome-Wide Interactions on Plasma Fibrinogen by Smoking, Alcohol Consumption and Body Mass Index : Results from Meta-Analyses of 80,607 Subjects

    Get PDF
    Peer reviewe

    Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis

    Get PDF
    Funder: QingLan Research Project of Jiangsu for Outstanding Young TeachersFunder: Project funded by Postdoctoral Science Foundation of Xuzhou Medical UniversityFunder: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for Xuzhou Medical UniversityAbstract: We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population

    A genome-wide association search for type 2 diabetes genes in African Americans.

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    Antimycobacterial activity of new N1-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives

    No full text
    N1-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives were design, synthesized and tested for their in vitro antimycobacterial activity. The new compounds showed a moderate antimycobacterial activity against the tested strain of Mycobacterium tuberculosis H37Ra and a significant antimycobacterial activity against several mycobacteria other than tuberculosis strains

    The Th1 Immune Response to Plasmodium falciparum Circumsporozoite Protein Is Boosted by Adenovirus Vectors 35 and 26 with a Homologous Insert ▿

    No full text
    The most advanced malaria vaccine, RTS,S, is comprised of an adjuvant portion of the Plasmodium falciparum circumsporozoite (CS) protein fused to and admixed with the hepatitis B virus surface antigen. This vaccine confers short-term protection against malaria infection, with an efficacy of about 50%, and induces particularly B-cell and CD4+ T-cell responses. In the present study, we tested by the hypothesis that the Th1 immune response to CS protein, in particular the CD8+ T-cell response, which is needed for strong and lasting malaria immunity, is boosted to sustainable levels vectors adenovirus and 26 with an homologous insert 35 (Ad35.CS/Ad26.CS). In this study, we evaluated immune responses induced with vaccination regimens based on an adjuvant-containing, yeast-produced complete CS protein followed by two recombinant low-seroprevalence adenoviruses expressing P. falciparum CS antigen, Ad35.CS (subgroup B) and Ad26.CS (subgroup D). Our results show that (i) the yeast (Hansenula polymorpha)produced, adjuvanted full-length CS protein is highly potent in inducing high CS-specific humoral responses in mice but produces poor T-cell responses, (ii) the Ad35.CS vector boosts the gamma interferon-positive (IFN-γ+) CD8+ T-cell response induced by the CS protein immunization and shifts the immune response toward the Th1 type, and (iii) a three-component heterologous vaccination comprised of a CS protein prime followed by boosts with Ad35.CS and Ad26.CS elicits an even more robust and sustainable IFN-γ+ CD8+ T-cell response than one- or two-component regimens. The Ad35.CS/Ad26.CS combination boosted particularly the IFN-γ+ and tumor necrosis factor alpha-positive (TNF-α+) T cells, confirming the shift of the immune response from the Th2 type to the Th1 type. These results support the notion of first immunizations of infants with an adjuvanted CS protein vaccine, followed by a booster Ad35.CS/Ad26.CS vaccine at a later age, to induce lasting protection against malaria for which the Th1 response and immune memory is required
    corecore