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Abstract

Plasma fibrinogen is an acute phase protein playing an important role in the blood

coagulation cascade having strong associations with smoking, alcohol

consumption and body mass index (BMI). Genome-wide association studies

(GWAS) have identified a variety of gene regions associated with elevated plasma

fibrinogen concentrations. However, little is yet known about how associations

between environmental factors and fibrinogen might be modified by genetic

variation. Therefore, we conducted large-scale meta-analyses of genome-wide

interaction studies to identify possible interactions of genetic variants and smoking

status, alcohol consumption or BMI on fibrinogen concentration. The present study

included 80,607 subjects of European ancestry from 22 studies. Genome-wide

interaction analyses were performed separately in each study for about 2.6 million

single nucleotide polymorphisms (SNPs) across the 22 autosomal chromosomes.

For each SNP and risk factor, we performed a linear regression under an additive

genetic model including an interaction term between SNP and risk factor.

Interaction estimates were meta-analysed using a fixed-effects model. No genome-

wide significant interaction with smoking status, alcohol consumption or BMI was

observed in the meta-analyses. The most suggestive interaction was found for

smoking and rs10519203, located in the LOC123688 region on chromosome 15,

with a p value of 6.261028. This large genome-wide interaction study including

80,607 participants found no strong evidence of interaction between genetic

variants and smoking status, alcohol consumption or BMI on fibrinogen

concentrations. Further studies are needed to yield deeper insight in the interplay

between environmental factors and gene variants on the regulation of fibrinogen

concentrations.
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Introduction

Plasma fibrinogen is an acute phase protein playing an important role in the

blood coagulation cascade and is strongly associated with a variety of

environmental factors such as smoking status, alcohol consumption or obesity [1–

7]. Moreover, elevated fibrinogen concentrations indicate increased risks for

developing cardiovascular diseases [8–10]. Genetic studies reported substantial

relationships between specific genetic variants and fibrinogen concentrations [11–

17]; the heritability of plasma fibrinogen concentrations has been estimated to

range from 34% to 51% [11, 12, 18, 19]. Therefore, the regulation of fibrinogen

concentrations might be seen as a complex interplay between environmental and

genetic factors [20]. However, knowledge about potential interactions between

environmental factors such as cardiovascular risk factors and gene variants on

fibrinogen is still limited.

Smoking status, alcohol consumption and body mass index (BMI) are strong

determinants of fibrinogen concentrations [1–7]. A large meta-analysis showed

elevated fibrinogen concentrations in current smokers compared with non-

smokers; moreover, fibrinogen concentrations increased with the number of

cigarettes smoked per day showing a dose-related trend [7]. Similarly, elevated

fibrinogen concentrations have been reported in subjects with higher BMI values

[7]. For alcohol consumption, a lower mean fibrinogen concentration was

observed in subjects reporting current alcohol intake compared with subjects

reporting no alcohol intake [7]. All three factors represent behavioral risk factors

which are easy to assess and for which we hypothesized that gene-environment

interactions may modify individual risks enabling potentially targeted and

individualized preventive approaches.

Several family-based and genome-wide studies have reported associations of

specific gene regions with fibrinogen concentrations [11–17]. Recently, three large

genome-wide association studies (GWAS) including as many as 90,000

participants of European origin identified up to 24 strong association signals with

plasma fibrinogen concentration, among them one located in the fibrinogen b

chain (FGB) gene [15–17]. One of these analyses [17] was essentially based on the

same study population as in the present analyses.

However, little is known about whether the impact of smoking, alcohol

consumption, and BMI on fibrinogen concentrations is modified by specific gene

variants. Knowledge of such interactions might improve the understanding of the

underlying mechanism of fibrinogen synthesis and its regulation. Two candidate-

gene studies showed modifications in the association of smoking status and

fibrinogen concentration by the G/A-455 polymorphism (rs1800790) located at

the FGB gene [21, 22].

No genome-wide studies of effect modifications have been reported thus far for

fibrinogen concentrations. Therefore, the aim of the present study was to assess

potential gene-environment interactions (GxE) by smoking status, alcohol

consumption, and BMI on fibrinogen concentrations, using genome-wide data

from 22 studies with 80,607 subjects of European origin.

Genome-Wide Interactions on Fibrinogen

PLOS ONE | DOI:10.1371/journal.pone.0111156 December 31, 2014 4 / 18



Methods

Study population

The present study was carried out within the framework of the Cohorts for Heart

and Aging Research in Genomic Epidemiology (CHARGE) consortium which

combines data from several studies of participants of European origin conducted

in the United States and Europe [23]. Twenty-two studies comprising 80,607

participants provided results from their genome-wide interaction analyses for the

present investigation; an overview of these studies with basic information and

respective references is given in the online supporting information (S1 Methods

and S1 Table) All participants provided informed consent to use their DNA for

these analyses and all studies.

Fibrinogen measurements

Plasma fibrinogen concentrations were measured in 17 studies by a functional

method based on the Clauss assay and in five studies by an immunonephelometric

method and given in g/L [24, 25]. Fibrinogen concentrations were approximately

normally distributed in all studies and therefore analysed untransformed. More

details are given in the online supporting information (S1 Methods and S1 Table).

Assessment of smoking status, alcohol consumption and BMI

In all studies, smoking status and alcohol consumption were assessed by self-

reports from study participants; assessment of BMI was based on clinical

examination or self-report and described in kg/m2. For smoking status, current

smokers (‘‘smokers’’) were compared with a combined group of former smokers

and never-smokers (‘‘non-smokers’’). Former smokers were defined as not

smoking at time of examination in 19 studies; the remaining 3 studies set a

minimum cessation time before the examination which ranged between 30 days

and 3 years. For alcohol consumption, coding was ‘‘0’’ for no alcohol

consumption, ‘‘1’’ for alcohol consumption with less than 1 drink daily equivalent

to less than 10 g alcohol per day and ‘‘2’’ for alcohol consumption with 1 or more

drinks daily equivalent to 10 g alcohol or more per day. Information on smoking

status and BMI was available in all 22 studies and on alcohol consumption in 20

studies. The assessments of smoking status, alcohol consumption and BMI were

made at the same time as the fibrinogen measurements for all participants in all

studies.

Genotyping and imputation

Genotyping was conducted separately in each study using Affymetrix or Illumina

platforms and included from ,300,000 to ,1,000,000 genotyped single

nucleotide polymorphisms (SNPs). Genotype quality control and data cleaning

based on individual call rate, SNP call rate, and/or Hardy-Weinberg equilibrium

thresholds, and performed independently by each study.

Genome-Wide Interactions on Fibrinogen
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Genotyped data were imputed in each study separately to the ,2.6 million

SNPs identified in the HapMap II Caucasian (CEU) sample from the Centre

d’Etude du Polymorphisme Humain [26, 27].

More details about genotyping and imputation are given in the online

supporting information (S1 Methods and S2 Table).

Statistical analysis

Association of smoking status, alcohol consumption and BMI with fibrinogen

concentration

Associations of smoking status, alcohol consumption and BMI with fibrinogen

concentrations were assessed independently and separately in each study using

linear regression. Analyses were adjusted for age (linear) and sex as well as study-

specific covariates if required (see S1 Methods). Study-specific associations of

smoking status, alcohol consumption and BMI with fibrinogen concentration

were then meta-analysed using an inverse-variance weighted fixed-effect model.

Interaction between gene variants and smoking status, alcohol consumption

and BMI on fibrinogen concentration

Genome-wide analyses of the interaction between gene variants and smoking

status, alcohol consumption or BMI on fibrinogen concentration were performed

independently and separately in each study assuming an additive-genetic model

with an additive interaction. In all studies of unrelated individuals, linear

regression models with fibrinogen concentration as the outcome variable and the

SNP, the risk factor under consideration, and the interaction term ‘SNP x risk

factor’ were fit with adjustments for age (linear) and sex as well as study-specific

covariates if required (see S1 Methods). In family-based studies, linear mixed

effects models were applied to account for family correlations. Estimates of study-

specific genome-wide interactions were then meta-analysed applying inverse-

variance weighted fixed-effect models. To account for population stratification,

study-specific test statistics were corrected using the method of genomic control

[28]. SNPs with a low minor allele frequency (MAF) (,0.05) and a low

imputation quality (observed to expected variance ratio ,0.3) were omitted from

the meta-analyses.

The meta-analyses were performed using the software METAL developed for

genome-wide data [29]. To assess heterogeneity, the I2 index was computed for

each interaction estimate assuming that an I2 index around 25% or below

indicates no or low and around 50% moderate heterogeneity as suggested by

Higgins et al [30]. Genome-wide significance of interaction was defined as a p

value ,5.061028 for each of the three GxE analyses. Power analyses were

conducted using the R (version 3.0.2) pwr package.

Genome-Wide Interactions on Fibrinogen
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Results

Description of studies

The study population comprised a total of 80,607 participants of European

ancestry from 22 studies. Distributions of basic characteristics are provided for

each study in Table 1. Across the 22 studies, the average age ranged from 43.3 to

79.1 years and the percent of male participants ranged from 0 to 75.5%. Current

smoking behaviour was reported for 6.9 to 50.3% of the participants. No alcohol

consumption was reported for 5.8 to 54.9% of the participants and the mean BMI

ranged from 24.3 to 28.4 kg/m2. Mean fibrinogen concentration varied from 2.67

to 3.88 g/L.

Association of smoking status, alcohol consumption and BMI with

fibrinogen concentration

Strong significant associations of smoking status, alcohol consumption and BMI

with mean fibrinogen concentrations were observed in the vast majority of the 22

studies as can be seen in Fig. 1. Meta-analysis revealed mean differences in

fibrinogen concentrations of 0.163 g/L (95% CI 0.154 to 0.172, 8.56102280) for

current smokers compared with non-smokers, of -0.108 g/L (95% CI 20.113 to

20.102, 1.26102334) for one category increase of alcohol consumption (no,

,10 g/day, $10 g/day), and of 0.021 g/L (95% CI 0.020 to 0.022, p value

7.16102691) for one kg/m2 of BMI increase.

Interaction between gene variants and smoking status, alcohol

consumption and BMI on fibrinogen concentration – genome-wide

analyses

Overall

No genome-wide significant interactions with smoking status, alcohol con-

sumption and BMI were observed on fibrinogen concentration (Fig. 2). The

overall genomic inflation factors from the meta-analyses were 1.0174 for

interaction with smoking status, 0.9838 for interaction with alcohol consumption

and 1.0075 for interaction with BMI (see QQ plots in S1 Fig.). Exclusion of

studies with a genomic inflation factor .1.15 or ,1/1.15 (see S3 Table) did not

substantially alter these findings and revealed no genome-wide significant

interactions either. The heterogeneity of interaction estimates across studies was

rather weak. More than 85% of SNPs had an I2 index of 25% or less in all three

interaction analyses. The upper quartile of the I2 index value distribution was

15.5% for smoking, 16.1% for alcohol consumption and 15.5% for BMI analyses.

High-signal interactions

The Manhattan plot in Fig. 2 for smoking status (A) shows a peak on

chromosome 15 revealing suggestive evidence of an interaction with smoking

status for rs10519203, located in the LOC123688 region on chromosome 15, with

a p value of 6.261028 (Table 2). The difference in mean fibrinogen concentration

Genome-Wide Interactions on Fibrinogen
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between smokers and non-smokers was 0.048 g/L lower per copy of the A allele of

rs10519203. A forest plot providing the interaction estimates with smoking status

for each study and for the meta-analysis is given in S2 Fig. Heterogeneity was

estimated as I2 index545.4% indicating a moderate level of variation of the

interaction estimates across studies. The SNP rs10519203 alone was not

significantly associated with fibrinogen concentration in a ‘‘G’’ alone analysis (p

value 0.0005) performed by Sabater-Lleal et al. [17].

For alcohol consumption and BMI, the lowest p values were found for

rs11102001 in EPS8L3 on chromosome 1 (p value57.061027) and rs7120820 in

NELL1 on chromosome 11 (p value51.861026), see Table 2. In both cases, weak

heterogeneity was observed (I2 index#25%).

Table 1. Characteristics at the time of fibrinogen measurement by study.

Study
Sample
(N)

Age*
(years)

Male
sex (%)

Current
smokers (%)

No alcohol
consumption (%)

Alcohol
consumption
,10 g/day (%)

Alcohol
consumption
$10 g/day (%)

BMI (kg/
m2)

Fibrinogen*
(g/L)

ARIC 9,256 54.3 (5.7) 47.1 24.6 55.9 23.0 21.1 27.0 (4.8) 2.97 (0.61)

B58C 6,085 45.2 (0.4) 49.7 23.5 20.3 39.1 40.6 27.4 (4.9) 2.95 (0.60)

CARDIA 1,435 45.8 (3.3) 47.0 20.3 NA NA NA 25.4 (5.1) 3.18 (0.66)

CHS 3,242 72.3 (5.4) 39.0 11.3 46.0 38.5 15.5 26.3 (4.4) 3.15 (0.62)

CROATIA-Vis 761 56.6 (15.5) 41.7 27.9 43.0 19.2 37.8 27.1 (4.9) 3.58 (0.82)

FHS 2,797 54.1 (9.7) 45.5 18.5 29.8 57.9 12.3 27.4 (5.0) 3.05 (0.57)

HBCS 1,728 61.4 (2.9) 40.2 23.9 16.5 54.6 28.9 27.4 (4.5) 3.23 (1.04)

InCHIANTI 1,128 67.7 (15.1) 44.9 19.0 24.5 30.0 45.5 27.2 (4.1) 3.48 (0.75)

KORA F3 1,520 52.1 (10.2) 49.3 18.0 29.9 23.6 46.1 27.2 (4.1) 2.89 (0.66)

KORA F4 1,777 53.9 (8.9) 48.9 20.0 24.5 29.9 45.6 27.7 (4.6) 2.67 (0.60)

LBC1921 466 79.1 (0.6) 42.1 6.9 23.2 56.9 20.0 26.2 (4.1) 3.56 (0.85)

LBC1936 989 69.6 (0.8) 50.8 12.6 19.2 40.7 40.0 27.8 (4.4) 3.27 (0.63)

MARTHA 613 44.1 (14.2) 23.8 25.9 NA NA NA 24.3 (4.4) 3.36 (0.68)

NTR 2,343 47.1 (13.9) 35.8 16.8 5.8 74.2 20.0 25.4 (4.0) 2.78 (0.66)

ORCADES 686 53.7 (15.3) 46.6 8.7 10.8 59.2 30.0 27.7 (4.9) 3.45 (0.81)

PROCARDIS-CL 3,490 61.9 (7.0) 75.5 50.3 37.3 33.7 29.0 28.4 (4.4) 3.88 (0.86)

PROCARDIS-Im 3,405 58.1 (8.9) 73.5 33.0 23.9 36.7 39.4 27.1 (4.2) 3.86 (1.00)

PROSPER 5,244 75.3 (3.3) 48.1 26.5 44.5 28.6 27.0 26.8 (4.2) 3.60 (0.74)

RS 2,068 70.4 (9.0) 35.0 23.5 18.1 51.6 30.3 26.4 (3.8) 2.81 (0.68)

SardiNIA 4,691 43.3 (17.6) 43.7 19.8 54.9 10.2 34.9 25.3 (4.7) 3.28 (0.66)

SHIP 3,807 48.7 (16.0) 48.4 31.5 34.3 19.1 46.6 27.2 (4.8) 2.98 (0.69)

WGHS 23,076 54.7 (7.1) 0 13.2 43.3 42.7 14.0 25.9 (5.0) 3.59 (0.78)

total 80,607

BMI: body mass index.
* Mean (standard deviation).

doi:10.1371/journal.pone.0111156.t001
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Interaction between gene variants and smoking status, alcohol

consumption and BMI on fibrinogen concentration - selected

candidate SNPs

The interaction of rs1800790 at the FGB locus and smoking status on fibrinogen

concentration (as it was shown in two candidate-gene approach studies

previously) was estimated with beta 50.029 in the present meta-analysis (p value

for interaction 0.006) indicating a 0.029 g/L higher level in mean fibrinogen

concentration per A allele copy in smokers compared with non-smokers

(Table 3). The I2 index of almost 60% indicated moderate heterogeneity.

Finally, we examined 24 signals previously shown to be associated with

circulating fibrinogen in genome-wide analysis in almost the same study

population [17] assuming a significance threshold of 0.0021 (Bonferroni

correction for 24 tests: 0.05/24). None of these candidates was significant at this

threshold in the present GxE meta-analyses. For smoking status, a suggestive

interaction was found for rs1800789 in the FGB gene on chromosome 4 (p value

for interaction 0.0028) revealing a 0.031 g/L higher difference in mean fibrinogen

concentration per A allele copy in smokers compared with non-smokers

(Table 3). This SNP represents almost the same signal as rs1800790 (r250.911,

D951.00) for which interactions with smoking was found previously and a similar

I2 index was estimated (see above).

For alcohol consumption and BMI, the lowest p values among the 24 signals

were observed for rs715 in CPS1 on chromosome 2 (p value50.0195) and for

rs10512597 in CD300LF on chromosome 17 (p value50.0049), see S4 and S5

Tables.

Discussion

Overall

The present study is the first to investigate interactions between smoking status,

alcohol consumption, and BMI and gene variants on fibrinogen concentrations

based on data from genome-wide interaction studies. Meta-analysing a

population of 80,607 participants of European ancestry drawn from 22 studies did

not identify any variant that modified the association of smoking status, alcohol

consumption and BMI with plasma fibrinogen concentrations with genome-wide

significance.

Fig. 1. Association of environmental factors with fibrinogen concentration (in g/L), adjusted for age
and sex. A) Forest plot for smoking status. The beta estimate with 95% confidence intervals indicates the
change in mean fibrinogen concentration (in g/L) by smoking status for each study and across all studies
(‘‘overall’’, estimated by meta-analysis). B) Forest plot for alcohol consumption. The beta estimate with 95%
confidence intervals indicates the change in mean fibrinogen concentration (in g/L) by alcohol consumption for
each study and across all studies (‘‘overall’’, estimated by meta-analysis). Alcohol consumption was assessed
only in 20 studies. C) Forest plot for BMI. The beta estimate with 95% confidence intervals indicates the
change in mean fibrinogen concentration (in g/L) by BMI for each study and across all studies (‘‘overall’’,
estimated by meta-analysis).

doi:10.1371/journal.pone.0111156.g001
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Association of smoking status, alcohol consumption and BMI with

fibrinogen concentration

Several studies have identified strong and significant associations of smoking

status, alcohol consumption and BMI with fibrinogen concentrations [1–7]. The

present study confirmed these associations and is in line with findings from a large

meta-analysis of 154,211 participants in 31 prospective studies conducted by the

Fibrinogen Studies Collaboration (FSC) which showed comparable estimates of

fibrinogen concentration differences in smokers compared to non-smokers and

for differences in BMI and alcohol consumption amounts [7]. These strong

associations of smoking status, alcohol consumption and BMI with fibrinogen

might be explained mainly by their relation with the acute phase reaction which

contributes to the regulation of the fibrinogen synthesis [1].

Interaction between gene variants and smoking status, alcohol

consumption and BMI on fibrinogen concentration – genome-wide

analyses

The present study found no evidence that the strong associations of smoking

status, alcohol consumption and BMI with fibrinogen concentrations were

significantly modified by any of the approximately 2.6 million polymorphisms

identified in the HapMap II Caucasian (CEU) sample. However, a peak on

chromosome 15 with suggestive evidence of an interaction with smoking status

was found for rs10519203 (p value for interaction 6.261028) which is located in

Fig. 2. Interaction of gene variants and environmental factors on fibrinogen concentration (in g/L), adjusted for age and sex. A) Manhattan plot for
smoking status. The horizontal axis denotes chromosome and position of each gene variant and the vertical axis gives the negative log10 of the p value for
interaction of each gene variant and smoking status on fibrinogen concentration (in g/L), estimated by meta-analyses. The dotted line denotes genome-wide
significance (5.061028). B) Manhattan plot for alcohol consumption. The horizontal axis denotes chromosome and position of each gene variant and the
vertical axis gives the negative log10 of the p value for interaction of each gene variant and alcohol consumption on fibrinogen concentration (in g/L),
estimated by meta-analyses. The dotted line denotes genome-wide significance (5.061028). Alcohol consumption was assessed only in 20 studies. C)
Manhattan plot for BMI. The horizontal axis denotes chromosome and position of each gene variant and the vertical axis gives the negative log10 of the p
value for interaction of each gene variant and BMI on fibrinogen concentration (in g/L), estimated by meta-analyses. The dotted line denotes genome-wide
significance (5.061028).

doi:10.1371/journal.pone.0111156.g002

Table 2. Interaction between gene variants and smoking status, alcohol consumption and BMI on fibrinogen concentration (in g/L) with lowest p value for
interaction.

Environmental factor
x SNP Chr Position A1* A2 % A1 Beta (SE) P value N studies Direction** I2 index

Smoking status x
rs10519203

15 76601101 A G 64.8 20.048 (0.009) 6.261020-

8
22 ---+—+-+-------+-+--- 45.4%

Alcohol consumption
x rs11102001

1 110011733 A G 59.0 0.057 (0.012) 7.061020-

7
18 ++++-++?+++-+++++?++ 0.0%

BMI x rs7120820 11 21350435 T C 37.6 0.004 (0.009) 1.861020-

6
21 ++++-++—+-+-+---++?++ 20.2%

BMI: body mass index, SNP: single nucleotide polymorphism, Chr: chromosome, SE: standard error.
* Allele 1 is effect allele, ** The order of studies under ‘‘direction’’ refers to the order of studies in Table 1.

doi:10.1371/journal.pone.0111156.t002
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the LOC123688 region. The effect on fibrinogen level by smoking status was lower

per copy of the A allele (major allele) indicating that fibrinogen regulation by

tobacco exposure might be attenuated depending on the genotype of rs10519203.

Table 3. Interaction with smoking status for association with fibrinogen concentration (in g/L) in SNPs with previously reported interactions (Green et al.
1993; Thomas et al. 1996) or among SNPs associated with circulating fibrinogen (Sabater-Leal et al. 2013).

SNP Chr Position A1* A2 % A1 Beta (SE) P value N studies Direction** I2 index

Significant interaction according to Green et al. (1993) and Thomas et al. (1996):

rs1800790 4 155703158 A G 23.2 0.029 (0.011) 0.0062 22 +++++---++-+++-++—
+—

59.2%

Significant SNPs according to Sabater-Leal et al. (2013):

rs1938492 1 65890417 A C 62.1 0.017 (0.009) 0.058 22 ++-+---+-+++-+-+++—
++

0.0%

rs4129267 1 152692888 T C 39.1 20.004 (0.009) 0.614 22 +-+-+-++—+++++---++-
+

43.9%

rs10157379 1 245672222 T C 62.3 0.008 (0.009) 0.386 21 ------+++++-++++++-
?++

0.0%

rs12712127 2 102093093 A G 40.6 0.009 (0.009) 0.286 22 ++-++-++—+-++-
+++++—

0.0%

rs6734238 2 113557501 A G 58.6 20.005 (0.009) 0.561 22 +---+++-+-+-+—+-+-+-+ 0.8%

rs715 2 211251300 T C 68.0 20.007 (0.011) 0.501 17 -?+?-+—?+—?+-+—
+?+-

0.7%

rs1476698 2 241945122 A G 64.5 0.008 (0.009) 0.357 22 ++------+---+—++++-++ 34.9%

rs1154988 3 137407881 A T 78.1 20.013 (0.010) 0.194 22 -----+-++++---+—+-+-+ 0.0%

rs16844401 4 3419450 A G 7.5 0.017 (0.020) 0.392 18 —??+?-+++++—+++-
+?-+

1.0%

rs1800789 4 155702193 A G 21.1 0.031 (0.011) 0.0028 22 +++++---++-++—++----- 61.1%

rs11242111 5 131783957 A G 5.7 0.051 (0.033) 0.124 9 +??+?+?+?-?++?-
????+??

30.0%

rs2106854 5 131797073 T C 20.8 20.004 (0.011) 0.737 22 ---------+-+++++-+++++ 0.0%

rs10226084 7 17964137 T C 51.9 20.008 (0.009) 0.374 22 -++++---+---+-++---+— 0.0%

rs2286503 7 22823131 T C 36.1 20.013 (0.009) 0.131 22 +-+-++++++—+-+----
+—

0.0%

rs7464572 8 145093155 C G 59.7 20.004 (0.009) 0.672 19 +?++----?-++?-+----+-+ 0.0%

rs7896783 10 64832159 A G 48.4 20.014 (0.008) 0.094 22 -+-++—++-----+----+— 0.0%

rs1019670 11 59697175 A T 35.8 20.009 (0.009) 0.345 22 +---++++++---+----+--- 0.0%

rs7968440 12 49421008 A G 64.0 0.003 (0.009) 0.855 22 +-+-+----+----++++—++ 52.0%

rs434943 14 68383812 A G 31.7 20.002 (0.010) 0.884 21 -----+-++++----++++?++ 0.0%

rs12915708 15 48835894 C G 30.6 20.003 (0.009) 0.776 22 -+—++---+-++----+-+— 20.7%

rs7204230 16 51749832 T C 69.7 0.008 (0.010) 0.447 19 +?-++—+?+—?-+++++-
++

0.0%

rs10512597 17 70211428 T C 17.9 20.008 (0.012) 0.490 21 ----+-+—+-+—+-
+++?++

0.0%

rs4817986 21 39387382 T G 27.9 20.025 (0.010) 0.011 20 —?+---+-----++---+?— 12.8%

rs6010044 22 49448804 A C 79.5 0.005 (0.012) 0.669 21 +—++++---++++—?-
++++

0.0%

SNP: single nucleotide polymorphism, Chr: chromosome, SE: standard error.
* Allele 1 is effect allele, ** The order of studies under ‘‘direction’’ refers to the order of studies in Table 1.

doi:10.1371/journal.pone.0111156.t003
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A strong association of genetic variants in the LOC123688 region with lung cancer

has been reported recently [31–33]. One of these variants, rs8034191, was in

complete linkage disequilibrium with rs10519203 (r251, D951). Interestingly,

Truong et al. found that these variants were associated with significantly increased

lung cancer risk per copy of their minor allele in former or current but not in

never smokers [33].

Interaction between gene variants and smoking status, alcohol

consumption and BMI on fibrinogen concentration - selected

candidate SNPs

Two previous studies with a candidate-gene approach reported interactions

between the G/A-455 polymorphism at the FGB gene (rs1800790) and smoking

status on fibrinogen concentration in samples of healthy men; however, these

studies reported contradictory findings [21, 22]: whereas, in 86 healthy men,

fibrinogen concentrations were significantly higher per copy of the A allele in

smokers only [21], the opposite was true in 482 healthy middle-aged men with

significant associations only in non-smokers [22]. The present meta-analyses

could confirm the findings of an association only in smokers [21] albeit with a

sample size more than 200 times larger.

Several studies have identified strong associations of specific variants with

fibrinogen levels; one of these was in the fibrinogen b chain (FBG) gene [15–17].

A very recently performed meta-analysis conducted also within the framework of

the CHARGE consortium and comprising almost the same study population as

the present investigation revealed 24 independent signals in 23 loci being

significantly associated with fibrinogen concentration [17]. The present GxE

meta-analyses indicated no significant modifications of the associations of

smoking status, alcohol consumption and BMI with fibrinogen concentration.

Strengths and limitations

The present study was restricted to genetic variants with a minor allele frequency

of at least 5%. Analyses for variants with a lower MAF produced an excess of small

p values which were likely due to a poor approximation of true null distribution

of the test statistics by the normal distribution. It is possible, however, that there

may be significant interactions for rare variants which could be detected in studies

with improved approximations or with even larger sample sizes. Moreover, the

three determinants of fibrinogen were employed in commonly used categoriza-

tions across all studies; however, other definitions (e.g. never smokers versus ever

smokers, other cut-off values than 10 g/day for alcohol consumption or

categorized BMI) might yield significant interactions. Finally, we observed

heterogeneity in covariate distribution and effect estimates which may affect our

findings.

The present study is the first genome-wide interaction study aimed to detect

interactions between environmental factors and gene variants on fibrinogen

Genome-Wide Interactions on Fibrinogen
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concentration. Its strength relies on the large numbers of studies and participants

which was confirmed by a power analysis: If we assume a study population with a

prevalence of exposed of $20% (e.g. smokers), a SNP with a MAF of $0.05, and

an interaction of $0.1 meaning that the difference in mean fibrinogen

concentration between exposed and non-exposed participants is at least 0.1 g/L

higher per one copy of the minor allele, the power to detect an interaction would

be greater than 90% based on 80,000 participants and a significance level of

5.061028.These estimations indicate that the power of our study is large enough

to detect genome-wide relevant interactions between SNPs and smoking, alcohol

consumption and BMI on fibrinogen concentration.

Conclusions

The present large genome-wide interaction analyses including 22 studies

comprising 80,607 subjects of European ancestry did not identify significant

interaction of gene variants and smoking status, alcohol consumption or BMI on

fibrinogen concentrations. The strong associations of these three variables with

fibrinogen are not modified substantially by any of the 2.6 million common

genetic variants analysed in this study. Suggestive evidence of an interaction could

be found for smoking status with a fibrinogen-SNP association in smokers and

but not in non-smokers. Further studies are needed to yield deeper insight in the

interplay between environmental factors and functional genomics on the

regulation of fibrinogen concentrations.
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