2,395 research outputs found
Band Structure and Quantum Conductance of Nanostructures from Maximally-Localized Wannier Functions: The Case of Functionalized Carbon Nanotubes
We have combined large-scale, -point electronic-structure
calculations with the maximally-localized Wannier functions approach to
calculate efficiently the band structure and the quantum conductance of complex
systems containing thousands of atoms while maintaining full first-principles
accuracy. We have applied this approach to study covalent functionalizations in
metallic single-walled carbon nanotubes. We find that the band structure around
the Fermi energy is much less dependent on the chemical nature of the ligands
than on the functionalization pattern disrupting the conjugation
network. Common aryl functionalizations are more stable when paired with
saturating hydrogens; even when paired, they still act as strong scattering
centers that degrade the ballistic conductance of the nanotubes already at low
degrees of coverage.Comment: To be published in Phys. Rev. Let
On the Distribution of Salient Objects in Web Images and its Influence on Salient Object Detection
It has become apparent that a Gaussian center bias can serve as an important
prior for visual saliency detection, which has been demonstrated for predicting
human eye fixations and salient object detection. Tseng et al. have shown that
the photographer's tendency to place interesting objects in the center is a
likely cause for the center bias of eye fixations. We investigate the influence
of the photographer's center bias on salient object detection, extending our
previous work. We show that the centroid locations of salient objects in
photographs of Achanta and Liu's data set in fact correlate strongly with a
Gaussian model. This is an important insight, because it provides an empirical
motivation and justification for the integration of such a center bias in
salient object detection algorithms and helps to understand why Gaussian models
are so effective. To assess the influence of the center bias on salient object
detection, we integrate an explicit Gaussian center bias model into two
state-of-the-art salient object detection algorithms. This way, first, we
quantify the influence of the Gaussian center bias on pixel- and segment-based
salient object detection. Second, we improve the performance in terms of F1
score, Fb score, area under the recall-precision curve, area under the receiver
operating characteristic curve, and hit-rate on the well-known data set by
Achanta and Liu. Third, by debiasing Cheng et al.'s region contrast model, we
exemplarily demonstrate that implicit center biases are partially responsible
for the outstanding performance of state-of-the-art algorithms. Last but not
least, as a result of debiasing Cheng et al.'s algorithm, we introduce a
non-biased salient object detection method, which is of interest for
applications in which the image data is not likely to have a photographer's
center bias (e.g., image data of surveillance cameras or autonomous robots)
The phase diagram of Yang-Mills theory with a compact extra dimension
We present a non-perturbative study of the phase diagram of SU(2) Yang-Mills
theory in a five-dimensional spacetime with a compact extra dimension. The
non-renormalizable theory is regularized on an anisotropic lattice and
investigated through numerical simulations in a regime characterized by a
hierarchy between the scale of low-energy physics, the inverse compactification
radius, and the cutoff scale. We map out the structure of the phase diagram and
the pattern of lines corresponding to fixed values of the ratio between the
mass of the fifth component of the gauge field and the non-perturbative mass
gap of the four-dimensional modes. We discuss different limits of the model,
and comment on the implications of our findings.Comment: 17 pages, 9 figure
CP asymmetry in in a general two-Higgs-doublet model with fourth-generation quarks
We discuss the time-dependent CP asymmetry of decay in an
extension of the Standard Model with both two Higgs doublets and additional
fourth-generation quarks. We show that although the Standard Model with
two-Higgs-doublet and the Standard model with fourth generation quarks alone
are not likely to largely change the effective from the decay of
, the model with both additional Higgs doublet and
fourth-generation quarks can easily account for the possible large negative
value of without conflicting with other experimental
constraints. In this model, additional large CP violating effects may arise
from the flavor changing Yukawa interactions between neutral Higgs bosons and
the heavy fourth generation down type quark, which can modify the QCD penguin
contributions. With the constraints obtained from processes
such as and , this model can lead to the
effective to be as large as in the CP asymmetry of .Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.
Numerical properties of staggered quarks with a taste-dependent mass term
The numerical properties of staggered Dirac operators with a taste-dependent
mass term proposed by Adams [1,2] and by Hoelbling [3] are compared with those
of ordinary staggered and Wilson Dirac operators. In the free limit and on
(quenched) interacting configurations, we consider their topological
properties, their spectrum, and the resulting pion mass. Although we also
consider the spectral structure, topological properties, locality, and
computational cost of an overlap operator with a staggered kernel, we call
attention to the possibility of using the Adams and Hoelbling operators without
the overlap construction. In particular, the Hoelbling operator could be used
to simulate two degenerate flavors without additive mass renormalization, and
thus without fine-tuning in the chiral limit.Comment: 14 pages, 9 figures. V2: published version; important note added
regarding Hoelbling fermions, otherwise minor change
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
An enzyme-linked immunosorbent assay for detection of avian influenza virus subtypes H5 and H7 antibodies
BACKGROUND: Avian influenza virus (AIV) subtypes H5 and H7 attracts particular attention because of the risk of their potential pathogenicity in poultry. The haemagglutination inhibition (HI) test is widely used as subtype specific test for serological diagnostics despite the laborious nature of this method. However, enzyme-linked immunosorbent assays (ELISAs) are being explored as an alternative test method. H5 and H7 specific monoclonal antibodies were experimentally raised and used in the development of inhibition ELISAs for detection of serological response specifically directed against AIV subtypes H5 and H7. The ELISAs were evaluated with polyclonal chicken anti-AIV antibodies against AIV subtypes: H1N2, H5N2, H5N7, H7N1, H7N7, H9N9, H10N4 and H16N3. RESULTS: Both the H5 and H7 ELISA proved to have a high sensitivity and specificity and the ELISAs detected H5 and H7 antibodies earlier during experimental infection than the HI test did. The reproducibility of the ELISA’s performed at different times was high with Pearson correlation coefficients of 0.96-0.98. CONCLUSIONS: The ELISAs are a potential alternative to the HI test for screening of large amounts of avian sera, although only experimental sera were tested in this study
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
Global Journalist: Bush's State of the Union speech and his choice of words criticized around the world
In this Jan. 31, 2002 episode, Stuart Loory asks his international guests for their views on President Bush's State of the Union message. From Pakistan to Peru to Slovenia and South Africa, they all agree the President's wording was discriminatory, denoting certain countries, therefore - its citizens as a whole - are "uncivilized." They reflect on the war against terrorism's current results
- …
