51 research outputs found

    La vegetazione psammofila della Sicilia settentrionale

    Get PDF
    Coastal sand dune vegetation of Northern Sicily from Termini Imerese (Palermo) to Capo Peloro (Messina) was examined. The study revealed the presence of low dunes whose evolution and development is biased either by the local coast mophogenetic processes or due to the high anthropogenic pressure. Several associations referred to the classes Cakiletea and Ammophiletea were found, and, in particular: Salsolo kali- Cakiletum maritimae, Cakilo maritimae-Xanthietum italici, Salsolo kali-Euphorbietum peplis, Glaucio flavi-Matthioletum tricuspidatae, Sporoboletum arenarii, Cypero capitati-Agropyretum juncei, Medicagini marinae-Ammophiletum australis and Centaureo sphaerocephalae-Ononidetum ramosissimae. Two of these plant communities, i.e. Salsolo kali-Euphorbietum peplis and Glauco flavi-Matthioletum tricuspidatae are new to Italy and Sicily, respectively. The intense erosion of sandy deposits severely affected the most mature plant communities referred to Ammophiletea, leading to the degradation or even the disappearance of some elements of the local psammophilous dynamic serie

    Assessing plant diversity and composition in grasslands across spatial scales: the standardised EDGG sampling methodology

    Get PDF
    This paper presents the details of the EDGG sampling methodology and its underlying rationales. The methodology has been applied during EDGG Research Expeditions and EDGG Field Workshops since 2009, and has been subsequently adopted by various other researchers. The core of the sampling are the EDGG Biodiversity Plots, which are 100‐m2 squares comprising, in two opposite corners, nested‐plot series of 0.0001, 0.001, 0.01, 0.1, 1 and 10 m2 square plots, in which all terricolous vascular plants, bryophytes and lichens are recorded using the shoot presence method. In the 10‐m2 plots, species cover is also estimated as a percentage and various environmental and structural parameters are recorded. Usually the EDGG Biodiversity Plots are complemented by the sampling of additional 10 m2 normal plots with the same parameters as the 10‐m2 corners of the first, allowing coverage of a greater environmental diversity and the achievement of higher statistical power in the subsequent analyses for this important grain size. The EDGG sampling methodology has been refined over the years, while its core has turned out to generate high‐quality, standardised data in an effective manner, which facilitates a multitude of analyses. In this paper we provide the current versions of our guidelines, field forms and data entry spreadsheets, as open‐access Online Resources to facilitate the easy implementation of this methodology by other researchers. We also discuss potential future additions and modifications to the approach, among which the most promising are the use of stratified‐random methods to a priori localise the plots and ideas to sample invertebrate taxa on the same plots and grain sizes, such as grasshoppers (Orthoptera) and vegetation‐dwelling spiders (Araneae). As with any other method, the EDGG sampling methodology is not ideal for every single purpose, but with its continuous improvements and its flexibility, it is a good multi‐ purpose approach. A particularly advantageous element, lacking in most other sampling schemes, including classical phytosociogical sampling, is the multi‐scale and multi‐taxon approach, which provides data that allow for deeper understanding of the generalities and idiosyncrasies of biodiversity patterns and their underlying drivers across scales and taxa

    Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe's alien and native floras

    Get PDF
    Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders - abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions - for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.Deutsche Forschungsgemeinschaft (264740629) Grantová Agentura České Republiky (19-28491X) Grantová Agentura České Republiky (19-28807X) Grantová Agentura České Republiky (RVO 67985939) Austrian Science Fund (I 2086 - B29) Bundesministerium für Bildung und Forschung (01LC1807A) Eusko Jaurlaritza (IT299-10) National Research Foundation of Korea (2018R1C1B6005351) University of Latvia (AAp2016/B041//Zd2016/AZ03) Villum Fonden (16549

    First overview on the 4th Annex I Habitats Report in Italy: methods, criticality, results and future prospects

    Get PDF
    Like all the other EU/28 countries, in 2019 Italy developed the 4th Italian Report ex-Art. 17 on the conservation status of the Habitats of Annex I to the 92/43/EEC Directive. Institutional referent of the process, on behalf of the Ministry for Environment, Land and Sea Protection (MATTM), was the Italian Institute for Environmental Protection and Research (ISPRA) with the scientific support of the Italian Botanical Society (SBI). A huge working group composed of thematic and territorial experts was formed with the task to collect, analyse, validate the data resulting from Annex I Habitat monitoring in Italy for the period 2013-2018, whose collection is in charge to the regional administrations. Data on 124 types of terrestrial and inland water Habitats present in Italy have been processed in order to assess their overall conservation status in the Biogeographic Regions of occurrence. The carried out activity led to the compilation of 278 assessment sheets. The work included a critical analysis of the data and a broad scientific confrontation aimed at finding methodologically robust solutions to fill the gaps. The work was structured so as to guarantee the traceability of the information and to allow the collection of "gray" literature and scientific articles, phytosociological surveys and unpublished material of the specialists, composing a substantial pool of data useful for starting a long-term process to support the next reporting cycles. Cartographic outcomes, associated databases and additional data used for the assessments will be available online on the ISPRA Portal as soon as the validation process by the European Commission will be completed. A freely accessible online archive of phytosociological surveys representative of the various Annex I Habitats in Italy is being set up within the national "VegItaly" database, managed by the Italian Society of Vegetation Science, by way of a dedicated archive named "HAB_IT". Such a long-term vision, oriented to the storage and enhancement of knowledge, represents an important innovative aspect and a significant progress towards the construction of an effective monitoring system for the conservation of Annex I Habitats in Italy

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    Habitat conservation in Italy: the state of the art in the light of the first European Red List of Terrestrial and Freshwater Habitats

    Get PDF
    The importance of taking into account ecosystems, plant communities and habitats for the development of biodiversity conservation strategies is increasingly acknowledged. Recently, the first ever European Red List of Habitats was produced, which provided an evaluation of the extinction risk of EUNIS-based natural and semi-natural habitats in Europe. As assessment unit, it used the habitat intended as a plant community, thus representing a landmark for the role of vegetation science in nature conservation. In the present paper, the results of the European Red List of Habitats are analyzed at the national scale with specific reference to the terrestrial and freshwater habitat types occurring in Italy. More than three-quarters of the assessed European habitat types were recognized for the Italian territory. The distribution of the threat categories reflects approximately the situation at the EU28 level. About 35% of the assessed habitat types are referred to a threat category; no critically endangered habitat is present in Italy. The most frequently used criteria are those related to a reduction in quantity. Some critical issues arising from the analyses are discussed. In particular, the presence of knowledge gaps is pointed out, with remarkable reference to the poor availability of spatial and quantitative data, severely affecting the application of the criteria adopted for the assessment. Descriptions of habitat types from Italy are reported, some of which are representative, emblematic or even exclusive to the Italian territory. The outcomes of the analysis represent the starting point for the future development of a national-scale Red List of Habitats. Results also emphasized how habitat types with a too broad definition pose a limit to a proper evaluation of the regional biogeographic variability, often very high in Italy, with local floristic and phytocoenotic peculiarities which do not find room in the adopted European typology. This is the reason why the development of national subtypes stands as a necessary step for the development of a realistic and effective assessment at the national scale

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board

    European Vegetation Archive (EVA): An integrated database of European vegetation plots

    Get PDF
    © 2016 International Association for Vegetation Science. The European Vegetation Archive (EVA) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and regional vegetation- plot databases on a single software platform. Data storage in EVA does not affect on-going independent development of the contributing databases, which remain the property of the data contributors. EVA uses a prototype of the database management software TURBOVEG 3 developed for joint management of multiple databases that use different species lists. This is facilitated by the SynBioSys Taxon Database, a system of taxon names and concepts used in the individual European databases and their corresponding names on a unified list of European flora. TURBOVEG 3 also includes procedures for handling data requests, selections and provisions according to the approved EVA Data Property and Governance Rules. By 30 June 2015, 61 databases from all European regions have joined EVA, contributing in total 1 027 376 vegetation plots, 82% of them with geographic coordinates, from 57 countries. EVA provides a unique data source for large-scale analyses of European vegetation diversity both for fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/eva-database

    Regional metacommunities in two coastal systems: spatial structure and drivers of plant assemblages

    No full text
    Aim Biogeographical patterns in metacommunities are still poorly understood, and different processes are expected to occur in different habitats. We analysed the regional plant metacommunities of coastal habitats to test whether (1) the influence of space and climate differs between two habitats differentiated along the seashore–inland gradient, and (2) regional variation in species composition of these habitats can be ascribed to different metacommunity paradigms. Location The entire coast of the Iberian Peninsula, south-western Europe. Methods We collected data on the plant species composition of coastal sites on sand dunes across 3000 km of coastline. The sites were classified into two habitats corresponding to shifting and stable sand dunes, and divided into three distinct geographical regions: Cantabrian, Atlantic and Mediterranean. We assessed the geographical structure of the species composition using ordination, estimates of species turnover and spatial autocorrelation. We then used multivariate models and variation partitioning to test the influence of climatic and spatial effects. Analyses were conducted for the whole data set and the geographical subsets. Results Metacommunities from shifting and stable dunes showed similar spa- tial patterns, with the highest species turnover occurring in the Mediterranean region. Similarities between communities that were nearer each other (typically < 100 km) were weaker in shifting than in stable dunes, although the distance decay for sites that were further apart was similar in both habitats. Variation in species composition in shifting dunes was mainly explained by distance and climate, while in stable dunes the effect of climate was clearly dominant. The observed differences were relatively consistent across geographical regions. Main conclusions Distinct processes structure the metacommunities in two dune habitats differentiated along the seashore–inland gradient. Communities of shifting dunes seem to be structured by an interplay of neutral or patch-dynamic processes and to a lesser degree by species sorting. In contrast, communities of stable dunes are mainly governed by species sorting in response to climatic gradi- ents. These results highlight the importance of differentiating habitats according to local ecological factors when analysing regional patterns in metacommunities
    corecore