6,462 research outputs found

    Road Pavement Asphalt Concretes for Thin Wearing Layers: A Machine Learning Approach towards Stiffness Modulus and Volumetric Properties Prediction

    Get PDF
    In this study a novel procedure is presented for an efficient development of predictive models of road pavement asphalt concretes mechanical characteristics and volumetric properties, using shallow artificial neural networks. The problems of properly assessing the actual generalization feature of a model and avoiding the effects induced by a fixed training-test data split are addressed. Since machine learning models require a careful definition of the network hyperparameters, a Bayesian approach is presented to set the optimal model configuration. The case study covered a set of 92 asphalt concrete specimens for thin wearing layers

    Timing techniques with picosecond-order accuracy for novel gaseous detectors

    Full text link
    A simulation model is developed to train Artificial Neural Networks (ANN), for precise timing of PICOSEC Micromegas detector signals. The aim is to develop fast, online timing algorithms as well as minimising the information to be saved during data acquisition. PICOSEC waveforms were collected and digitised by a fast oscilloscope during a femptosecond-laser test beam run. A data set comprising waveforms collected with attenuated laser beam intensity, eradicating the emission of more than one photoelectron per light pulse from the PICOSEC photocathode, was utilised by a simulation algorithm to generate waveforms to train an ANN. A second data set of multi-photoelectron waveforms was used to evaluate the ANN performance in determining the PICOSEC Signal Arrival Time, relative to a fast photodiode time-reference. The ANN timing performance is the same as the results of a full offline signal processing, achieving a timing precision of 18.3±\pm0.6 ps.Comment: 4 pages, 6 figure

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Tests of the Equivalence Principle with Neutral Kaons

    Get PDF
    We test the Principle of Equivalence for particles and antiparticles, using CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time, we search for possible annual, monthly and diurnal modulations of the observables |eta_{+-}| and phi_{+-}, that could be correlated with variations in astrophysical potentials. Within the accuracy of CPLEAR, the measured values of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the gravitational potential. We analyze data assuming effective scalar, vector and tensor interactions, and we conclude that the Principle of Equivalence between particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9}, respectively, for scalar, vector and tensor potentials originating from the Sun with a range much greater than the distance Earth-Sun. We also study energy-dependent effects that might arise from vector or tensor interactions. Finally, we compile upper limits on the gravitational coupling difference between K0 and K0bar as a function of the scalar, vector and tensor interaction range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl) incorporate

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered
    corecore