66 research outputs found

    Phase 1/2a Study of the Malaria Vaccine Candidate Apical Membrane Antigen-1 (AMA-1) Administered in Adjuvant System AS01B or AS02A

    Get PDF
    Contains fulltext : 79496.pdf (publisher's version ) (Open Access)BACKGROUND: This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1) representing the 3D7 allele formulated with either the AS01B or AS02A Adjuvant Systems. METHODOLOGY/PRINCIPAL FINDINGS: After a preliminary safety evaluation of low dose AMA-1/AS01B (10 microg/0.5 mL) in 5 adults, 30 malaria-naive adults were randomly allocated to receive full dose (50 microg/0.5 mL) of AMA-1/AS01B (n = 15) or AMA-1/AS02A (n = 15), followed by a malaria challenge. All vaccinations were administered intramuscularly on a 0-, 1-, 2-month schedule. All volunteers experienced transient injection site erythema, swelling and pain. Two weeks post-third vaccination, anti-AMA-1 Geometric Mean Antibody Concentrations (GMCs) with 95% Confidence Intervals (CIs) were high: low dose AMA-1/AS01B 196 microg/mL (103-371 microg/mL), full dose AMA-1/AS01B 279 microg/mL (210-369 microg/mL) and full dose AMA-1/AS02A 216 microg/mL (169-276 microg/mL) with no significant difference among the 3 groups. The three vaccine formulations elicited equivalent functional antibody responses, as measured by growth inhibition assay (GIA), against homologous but not against heterologous (FVO) parasites as well as demonstrable interferon-gamma (IFN-gamma) responses. To assess efficacy, volunteers were challenged with P. falciparum-infected mosquitoes, and all became parasitemic, with no significant difference in the prepatent period by either light microscopy or quantitative polymerase chain reaction (qPCR). However, a small but significant reduction of parasitemia in the AMA-1/AS02A group was seen with a statistical model employing qPCR measurements. SIGNIFICANCE: All three vaccine formulations were found to be safe and highly immunogenic. These immune responses did not translate into significant vaccine efficacy in malaria-naive adults employing a primary sporozoite challenge model, but encouragingly, estimation of parasite growth rates from qPCR data may suggest a partial biological effect of the vaccine. Further evaluation of the immunogenicity and efficacy of the AMA-1/AS02A formulation is ongoing in a malaria-experienced pediatric population in Mali. TRIAL REGISTRATION: www.clinicaltrials.gov NCT00385047

    Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya

    Get PDF
    The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children.A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg) or Rabipur(R) rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations.374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42) antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7).FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42) vaccine development should focus on other formulations and antigen constructs.Clinicaltrials.gov NCT00223990

    What Is the Evidence to Support the Use of Therapeutic Gardens for the Elderly?

    Get PDF
    Horticulture therapy employs plants and gardening activities in therapeutic and rehabilitation activities and could be utilized to improve the quality of life of the worldwide aging population, possibly reducing costs for long-term, assisted living and dementia unit residents. Preliminary studies have reported the benefits of horticultural therapy and garden settings in reduction of pain, improvement in attention, lessening of stress, modulation of agitation, lowering of as needed medications, antipsychotics and reduction of falls. This is especially relevant for both the United States and the Republic of Korea since aging is occurring at an unprecedented rate, with Korea experiencing some of the world's greatest increases in elderly populations. In support of the role of nature as a therapeutic modality in geriatrics, most of the existing studies of garden settings have utilized views of nature or indoor plants with sparse studies employing therapeutic gardens and rehabilitation greenhouses. With few controlled clinical trials demonstrating the positive or negative effects of the use of garden settings for the rehabilitation of the aging populations, a more vigorous quantitative analysis of the benefits is long overdue. This literature review presents the data supporting future studies of the effects of natural settings for the long term care and rehabilitation of the elderly having the medical and mental health problems frequently occurring with aging

    Juxtamembrane Shedding of Plasmodium falciparum AMA1 Is Sequence Independent and Essential, and Helps Evade Invasion-Inhibitory Antibodies

    Get PDF
    The malarial life cycle involves repeated rounds of intraerythrocytic replication interspersed by host cell rupture which releases merozoites that rapidly invade fresh erythrocytes. Apical membrane antigen-1 (AMA1) is a merozoite protein that plays a critical role in invasion. Antibodies against AMA1 prevent invasion and can protect against malaria in vivo, so AMA1 is of interest as a malaria vaccine candidate. AMA1 is efficiently shed from the invading parasite surface, predominantly through juxtamembrane cleavage by a membrane-bound protease called SUB2, but also by limited intramembrane cleavage. We have investigated the structural requirements for shedding of Plasmodium falciparum AMA1 (PfAMA1), and the consequences of its inhibition. Mutagenesis of the intramembrane cleavage site by targeted homologous recombination abolished intramembrane cleavage with no effect on parasite viability in vitro. Examination of PfSUB2-mediated shedding of episomally-expressed PfAMA1 revealed that the position of cleavage is determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site block shedding, and parasites expressing these non-cleavable forms of PfAMA1 on a background of expression of the wild type gene invade and replicate normally in vitro. The non-cleavable PfAMA1 is also functional in invasion. However – in contrast to the intramembrane cleavage site - mutations that block PfSUB2-mediated shedding could not be stably introduced into the genomic pfama1 locus, indicating that some shedding of PfAMA1 by PfSUB2 is essential. Remarkably, parasites expressing shedding-resistant forms of PfAMA1 exhibit enhanced sensitivity to antibody-mediated inhibition of invasion. Drugs that inhibit PfSUB2 activity should block parasite replication and may also enhance the efficacy of vaccines based on AMA1 and other merozoite surface proteins

    Clearance of viable Mycobacterium ulcerans from Buruli ulcer lesions during antibiotic treatment as determined by combined 16S rRNA reverse transcriptase /IS 2404 qPCR assay.

    Get PDF
    INTRODUCTION: Buruli ulcer (BU) caused by Mycobacterium ulcerans is effectively treated with rifampicin and streptomycin for 8 weeks but some lesions take several months to heal. We have shown previously that some slowly healing lesions contain mycolactone suggesting continuing infection after antibiotic therapy. Now we have determined how rapidly combined M. ulcerans 16S rRNA reverse transcriptase / IS2404 qPCR assay (16S rRNA) became negative during antibiotic treatment and investigated its influence on healing. METHODS: Fine needle aspirates and swab samples were obtained for culture, acid fast bacilli (AFB) and detection of M. ulcerans 16S rRNA and IS2404 by qPCR (16S rRNA) from patients with IS2404 PCR confirmed BU at baseline, during antibiotic and after treatment. Patients were followed up at 2 weekly intervals to determine the rate of healing. The Kaplan-Meier survival analysis was used to analyse the time to clearance of M. ulcerans 16S rRNA and the influence of persistent M ulcerans 16S rRNA on time to healing. The Mann Whitney test was used to compare the bacillary load at baseline in patients with or without viable organisms at week 4, and to analyse rate of healing at week 4 in relation to detection of viable organisms. RESULTS: Out of 129 patients, 16S rRNA was detected in 65% of lesions at baseline. The M. ulcerans 16S rRNA remained positive in 78% of patients with unhealed lesions at 4 weeks, 52% at 8 weeks, 23% at 12 weeks and 10% at week 16. The median time to clearance of M. ulcerans 16S rRNA was 12 weeks. BU lesions with positive 16S rRNA after antibiotic treatment had significantly higher bacterial load at baseline, longer healing time and lower healing rate at week 4 compared with those in which 16S rRNA was not detected at baseline or had become undetectable by week 4. CONCLUSIONS: Current antibiotic therapy for BU is highly successful in most patients but it may be possible to abbreviate treatment to 4 weeks in patients with a low initial bacterial load. On the other hand persistent infection contributes to slow healing in patients with a high bacterial load at baseline, some of whom may need antibiotic treatment extended beyond 8 weeks. Bacterial load was estimated from a single sample taken at baseline. A better estimate could be made by taking multiple samples or biopsies but this was not ethically acceptable

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

    Get PDF
    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)
    corecore